Yu M, Kalashnyk N, Xu W, Barattin R, Benjalal Y, Laegsgaard E, Stensgaard I, Hliwa M, Bouju X, Gourdon A, Joachim C, Besenbacher F, Linderoth TR. Supramolecular architectures on surfaces formed through hydrogen bonding optimized in three dimensions.
ACS NANO 2010;
4:4097-4109. [PMID:
20550141 DOI:
10.1021/nn100450q]
[Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Supramolecular self-assembly on surfaces, guided by hydrogen bonding interactions, has been widely studied, most often involving planar compounds confined directly onto surfaces in a planar two-dimensional (2-D) geometry and equipped with structurally rigid chemical functionalities to direct the self-assembly. In contrast, so-called molecular Landers are a class of compounds that exhibit a pronounced three-dimensional (3-D) structure once adsorbed on surfaces, arising from a molecular backboard equipped with bulky groups which act as spacer legs. Here we demonstrate the first examples of extended, hydrogen-bonded surface architectures formed from molecular Landers. Using high-resolution scanning tunnelling microscopy (STM) under well controlled ultrahigh vacuum conditions we characterize both one-dimensional (1-D) chains as well as five distinct long-range ordered 2-D supramolecular networks formed on a Au(111) surface from a specially designed Lander molecule equipped with dual diamino-triazine (DAT) functional moieties, enabling complementary NH...N hydrogen bonding. Most interestingly, comparison of experimental results to STM image calculations and molecular mechanics structural modeling demonstrates that the observed molecular Lander-DAT structures can be rationalized through characteristic intermolecular hydrogen bonding coupling motifs which would not have been possible in purely planar 2-D surface assembly because they involve pronounced 3-D optimization of the bonding configurations. The described 1-D and 2-D patterns of Lander-DAT molecules may potentially be used as extended molecular molds for the nucleation and growth of complex metallic nanostructures.
Collapse