1
|
Batista MP, Fernández N, Gaspar FB, Bronze MDR, Duarte ARC. Extraction of Biocompatible Collagen From Blue Shark Skins Through the Conventional Extraction Process Intensification Using Natural Deep Eutectic Solvents. Front Chem 2022; 10:937036. [PMID: 35783202 PMCID: PMC9243641 DOI: 10.3389/fchem.2022.937036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The disposal of large amounts of skin waste resulting from the blue shark fishing industry presents several industrial and environmental waste management concerns. In addition, these marine subproducts are interesting sources of collagen, a fibrous protein that shows high social and economic interest in a broad range of biomedical, pharmaceutical, and cosmetic applications. However, blue shark wasted skins are a poorly explored matrix for this purpose, and conventional collagen recovery methodologies involve several pre-treatment steps, long extraction times and low temperatures. This work presents a new green and sustainable collagen extraction approach using a natural deep eutectic solvent composed of citric acid:xylitol:water at a 1:1:10 molar ratio, and the chemical characterization of the extracted collagen by discontinuous electrophoresis, thermogravimetric analysis, Fourier transformed infrared spectroscopy and circular dichroism. The extracted material was a pure type I collagen, and the novel approach presented an extraction yield 2.5 times higher than the conventional one, without pre-treatment of raw material and reducing the procedure time from 96 to 1 h. Furthermore, the in vitro cytotoxicity evaluation, performed with a mouse fibroblasts cell line, has proven the biocompatibility of the extracted material. Overall, the obtained results demonstrate a simple, quick, cheap and environmentally sustainable process to obtain marine collagen with promising properties for biomedical and cosmetic applications.
Collapse
Affiliation(s)
- Miguel P. Batista
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Frédéric B. Gaspar
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria do Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- FFULisboa, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana Rita C. Duarte
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- *Correspondence: Ana Rita C. Duarte,
| |
Collapse
|
2
|
Abdali Z, Renner-Rao M, Chow A, Cai A, Harrington MJ, Dorval Courchesne NM. Extracellular Secretion and Simple Purification of Bacterial Collagen from Escherichia coli. Biomacromolecules 2022; 23:1557-1568. [PMID: 35258298 DOI: 10.1021/acs.biomac.1c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of structural similarities with type-I animal collagen, recombinant bacterial collagen-like proteins have been progressively used as a source of collagen for biomaterial applications. However, the intracellular expression combined with current costly and time-consuming chromatography methods for purification makes the large-scale production of recombinant bacterial collagen challenging. Here, we report the use of an adapted secretion pathway, used natively byEscherichia colito secrete curli fibers, for extracellular secretion of the bacterial collagen. We confirmed that a considerable fraction of expressed collagen (∼70%) is being secreted freely into the extracellular medium, with an initial purity of ∼50% in the crude culture supernatant. To simplify the purification of extracellular collagen, we avoided cell lysis and used cross-flow filtration or acid precipitation to concentrate the voluminous supernatant and separate the collagen from impurities. We confirmed that the secreted collagen forms triple helical structures, using Sirius Red staining and circular dichroism. We also detected collagen biomarkers via Raman spectroscopy, further supporting that the recombinant collagen forms a stable triple helical conformation. We further studied the effect of the isolation methods on the morphology and secondary structure, concluding that the final collagen structure is process-dependent. Overall, we show that the curli secretion system can be adapted for extracellular secretion of the bacterial collagen, eliminating the need for cell lysis, which simplifies the collagen isolation process and enables a simple cost-effective method with potential for scale-up.
Collapse
Affiliation(s)
- Zahra Abdali
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Max Renner-Rao
- Department of Chemistry, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Amy Chow
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montreal H3A 0C5, Quebec, Canada
| | | | | |
Collapse
|
3
|
Grønlien KG, Pedersen ME, Tønnesen HH. A natural deep eutectic solvent (NADES) as potential excipient in collagen-based products. Int J Biol Macromol 2020; 156:394-402. [PMID: 32289414 DOI: 10.1016/j.ijbiomac.2020.04.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/12/2022]
Abstract
Natural deep eutectic solvents (NADES) have previously shown antibacterial properties alone or in combination with photosensitizers and light. In this study, we investigated the behavior of the structural protein collagen in a NADES solution. A combination of collagen and NADES adds the unique wound healing properties of collagen to the potential antibacterial effect of the NADES. The behavior of collagen in a NADES composed of citric acid and xylitol and aqueous dilutions thereof was assessed by spectroscopic, calorimetric and viscosity methods. Collagen exhibited variable unfolding properties dependent on the type of material (telo- or atelocollagen) and degree of aqueous dilution of the NADES. The results indicated that both collagen types were susceptible to unfolding in undiluted NADES. Collagen dissolved in highly diluted NADES showed similar results to collagen dissolved in acetic acid (i.e., NADES network possibly maintained). Based on the ability to dissolve collagen while maintaining its structural properties, NADES is regarded as a potential excipient in collagen-based products. This is the first study describing the solubility and structural changes of an extracellular matrix protein in NADES.
Collapse
Affiliation(s)
- Krister Gjestvang Grønlien
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway.
| | | | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, NO-0316 Oslo, Norway
| |
Collapse
|
4
|
Momeni L, Shareghi B, Farhadian S, Raisi F. Making bovine trypsin more stable and active by Erythritol: A multispectroscopic analysis, docking and computational simulation methods. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Yang T, Yang H, Fan Y, Li B, Hou H. Interactions of quercetin, curcumin, epigallocatechin gallate and folic acid with gelatin. Int J Biol Macromol 2018; 118:124-131. [DOI: 10.1016/j.ijbiomac.2018.06.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 10/28/2022]
|
6
|
Disintegration of collagen fibrils by Glucono-δ-lactone: An implied lead for disintegration of fibrosis. Int J Biol Macromol 2018; 107:175-185. [DOI: 10.1016/j.ijbiomac.2017.08.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 11/23/2022]
|
7
|
|
8
|
Chemical functionalization and stabilization of type I collagen with organic tanning agents. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0197-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Li Y, Miao M, Liu M, Jiang B, Zhang T, Chen X. Sorbitol counteracts high hydrostatic pressure-induced denaturation of inulin fructotransferase. Int J Biol Macromol 2014; 70:251-6. [DOI: 10.1016/j.ijbiomac.2014.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/18/2014] [Accepted: 06/07/2014] [Indexed: 11/29/2022]
|
10
|
Fluorescent nanonetworks: a novel bioalley for collagen scaffolds and tissue engineering. Sci Rep 2014; 4:5968. [PMID: 25095810 PMCID: PMC4122965 DOI: 10.1038/srep05968] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 07/16/2014] [Indexed: 11/25/2022] Open
Abstract
Native collagen is arranged in bundles of aligned fibrils to withstand in vivo mechanical loads. Reproducing such a process under in vitro conditions has not met with major success. Our approach has been to induce nanolinks, during the self-assembly process, leading to delayed rather than inhibited fibrillogenesis. For this, a designed synthesis of nanoparticles - using starch as a template and a reflux process, which would provide a highly anisotropic (star shaped) nanoparticle, with large surface area was adopted. Anisotropy associated decrease in Morin temperature and superparamagnetic behavior was observed. Polysaccharide on the nanoparticle surface provided aqueous stability and low cytotoxicity. Starch coated nanoparticles was utilized to build polysaccharide - collagen crosslinks, which supplemented natural crosslinks in collagen, without disturbing the conformation of collagen. The resulting fibrillar lamellae showed a striking resemblance to native lamellae, but had a melting and denaturation temperature higher than native collagen. The biocompatibility and superparamagnetism of the nanoparticles also come handy in the development of stable collagen constructs for various biomedical applications, including that of MRI contrast agents.
Collapse
|
11
|
Punitha V, Raman SS, Parthasarathi R, Subramanian V, Rao JR, Nair BU, Ramasami T. Molecular dynamics investigations on the effect of D amino acid substitution in a triple-helix structure and the stability of collagen. J Phys Chem B 2009; 113:8983-92. [PMID: 19518060 DOI: 10.1021/jp808690m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies on the structure and stability of peptides and proteins during l-->d configurational change are certainly important for the designing of peptides with new biological activity and protein engineering. The l-->d amino acid (d AA) changes have been observed in aged proteins such as collagen. Hence, in this study, an attempt has been made to explore the effect of the replacement of l amino acid (l AA) in the model collagen-like peptides with d AA and the origin of structural stability (destability) has been traced using the molecular dynamics (MD) method employing the AMBER force field. Our results reveal that the substitution of d AA produces a large local disruption to the triple-helical structure. Formation of a kink (bulge) at the site of substitution is observed from the detailed analysis of MD trajectory. However, this local perturbation of kinked helix changes the direction of the helices and affects the relative orientation of the respective AA residues for helix-helix interaction, enough to affect the overall stability of the model collagen-like peptide. The destabilization energy per d Ala substitution is 7.87 kcal/mol, which is similar to the value for the Gly-->Ala mutation in collagen. Since the Gly-->Ala mutation is involved in genetic disorders such as osteogenesis imperfecta (OI), the l-->d configurational change may produce a similar effect on collagen.
Collapse
Affiliation(s)
- V Punitha
- Chemical Laboratory, Central Leather Research Institute, Council of Scientific Industrial Research, Sardar Patel Road, Adyar, Chennai 600 020, India
| | | | | | | | | | | | | |
Collapse
|
12
|
Usha R, Rajaram A, Ramasami T. Stability of collagen in the presence of 3,4-dihydroxyphenylalanine (DOPA). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2009; 97:34-9. [PMID: 19716709 DOI: 10.1016/j.jphotobiol.2009.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/08/2009] [Accepted: 07/23/2009] [Indexed: 11/15/2022]
Abstract
Many cross-linking agents for collagen are available with varying levels of toxicity and some are in use in biomedical implants of collagen. L-DOPA (3,4-dihydroxyphenylalanine), a neurotransmitter, is a naturally present compound in the living system and is the target in therapeutic strategy of Parkinson's disease. This work reports the effect of the neurotransmitter DOPA on the stability of collagen solution using circular dichroism (CD), fluorescence spectroscopy, melting and shrinkage temperature. Collagen solution treated with various concentrations of DOPA ranging from 10(-2) to 10(-5)M was analyzed using fluorescence and CD spectra. When collagen was treated with DOPA, the intensity of emission was found to increase indicating the possibility of interaction of DOPA with collagen and maximum emission intensity was observed between 10(-3) and 10(-4)M for L-DOPA and DL-DOPA, respectively. CD studies show possible aggregation of collagen even in the presence of low concentrations of DOPA. The shrinkage temperature of DOPA treated collagen fibres was experimentally determined to be 69+/-1 degrees C. The melting temperature of DOPA cross linked collagen solution also exhibited a significant increase from 35 to 40 degrees C (+/-0.1) (P<0.05). The experimental results suggest that the optimum concentration for cross linking collagen with DOPA ranges between 10(-3) and 10(-4)M. Thus, DOPA may be a useful stabilizing agent for collagen for biomedical applications.
Collapse
Affiliation(s)
- R Usha
- Biophysics Laboratory, Central Leather Research Institute, Chennai, India.
| | | | | |
Collapse
|
13
|
Yang X, Wu D, Du Z, Li R, Chen X, Li X. Spectroscopy study on the interaction of quercetin with collagen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:3431-3435. [PMID: 19326949 DOI: 10.1021/jf803671s] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In order to understand the interaction between quercetin and collagen clearly, the UV-vis, FTIR-HATR, and fluorescence spectroscopy were used, and the data obtained by these experiments suggested that quercetin could bind to collagen. Results of FTIR-HATR and UV-vis absorption spectra suggested that the interaction of quercetin and collagen did not alter the conformation of collagen. The fluorescence spectra revealed that collagen could cause the quenching of quercetin fluorescence through a dynamic quenching procedure. The calculated quenching constant K(SV) and bimolecular quenching rate constant k(q) suggested that diffusion played a major role in quenching. In addition, the interaction of quercetin and collagen was evaluated by calculating (determining) the number of binding sites (n) and apparent binding constant K(A).
Collapse
Affiliation(s)
- Xiaozhan Yang
- Institute of Materia Medica, College of Pharmay, Third Military Medical University, Chongqing 400038, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Zhao W, Yang R. Protective Effect of Sorbitol on Enzymes Exposed to Microsecond Pulsed Electric Field. J Phys Chem B 2008; 112:14018-25. [DOI: 10.1021/jp8062367] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University No. 1800 Lihu Road, Wuxi 214122, China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University No. 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
15
|
Nam K, Kimura T, Kishida A. Controlling Coupling Reaction of EDC and NHS for Preparation of Collagen Gels Using Ethanol/Water Co-Solvents. Macromol Biosci 2008; 8:32-7. [DOI: 10.1002/mabi.200700206] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Usha R, Ramasami T. Stability of collagen with polyols against guanidine denaturation. Colloids Surf B Biointerfaces 2007; 61:39-42. [PMID: 17720461 DOI: 10.1016/j.colsurfb.2007.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 07/04/2007] [Accepted: 07/08/2007] [Indexed: 11/28/2022]
Abstract
The effect of polyol osmolytes such as erythritol, xylitol and sorbitol on the protection of collagen against guanidine hydrochloride (GdmCl) was studied using circular dichroism and fluorescence spectroscopy. Collagen was denatured by various concentrations of GdmCl in the presence of polyols. The absorbance was high for GdmCl treated collagen than native and polyols treated analogue. Fluorescence emission properties were studied at the excitation wavelength of 235 nm. The emission wavelength is red shifted from 308 to 370 nm for GdmCl treated collagen with polyols. Increasing the concentration of GdmCl did not affect the peak position. CD studies proved that the aggregation of collagen in the presence of lower concentrations of GdmCl. At higher concentrations of GdmCl due to the loss of secondary structure no clear CD spectra were observed. This shows that the unfolding of collagen is closely related to GdmCl concentrations. The ability of the polyols to protect collagen against guanidine denaturation decreased in order from erythritol to xylitol to sorbitol. The presence of OH group in the solvent structure is important for stabilization of collagen due to the formation of additional stabilizing hydrogen bonds.
Collapse
Affiliation(s)
- R Usha
- Biophysics Laboratory, Central Leather Research Institute, Adyar, Chennai, India.
| | | |
Collapse
|