1
|
Töpfer K, Upadhyay M, Meuwly M. Quantitative molecular simulations. Phys Chem Chem Phys 2022; 24:12767-12786. [PMID: 35593769 PMCID: PMC9158373 DOI: 10.1039/d2cp01211a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022]
Abstract
All-atom simulations can provide molecular-level insights into the dynamics of gas-phase, condensed-phase and surface processes. One important requirement is a sufficiently realistic and detailed description of the underlying intermolecular interactions. The present perspective provides an overview of the present status of quantitative atomistic simulations from colleagues' and our own efforts for gas- and solution-phase processes and for the dynamics on surfaces. Particular attention is paid to direct comparison with experiment. An outlook discusses present challenges and future extensions to bring such dynamics simulations even closer to reality.
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
2
|
Weissbecker J, Boumrifak C, Breyer M, Wießalla T, Shevchenko V, Mager T, Slavov C, Alekseev A, Kovalev K, Gordeliy V, Bamberg E, Wachtveitl J. Die spannungsabhängige Richtung der Reprotonierung der Schiff'schen Base bestimmt das Einwärtspumpen von Xenorhodopsin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juliane Weissbecker
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Chokri Boumrifak
- Institut für Physikalische and Theoretische Chemie Goethe Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Deutschland
| | - Maximilian Breyer
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Tristan Wießalla
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Vitaly Shevchenko
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52425 Jülich Deutschland
| | - Thomas Mager
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Chavdar Slavov
- Institut für Physikalische and Theoretische Chemie Goethe Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Deutschland
| | - Alexey Alekseev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52425 Jülich Deutschland
| | - Kirill Kovalev
- European Molecular Biology Laboratory Notkestraße 85 22607 Hamburg Deutschland
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases Moscow Institute of Physics and Technology Dolgoprudny Russland
| | - Valentin Gordeliy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) Forschungszentrum Jülich GmbH Wilhelm-Johnen-Straße 52425 Jülich Deutschland
| | - Ernst Bamberg
- Abteilung Biophysikalische Chemie Max-Planck-Institut für Biophysik Max-von-Laue-Straße 3 60438 Frankfurt am Main Deutschland
| | - Josef Wachtveitl
- Institut für Physikalische and Theoretische Chemie Goethe Universität Max-von-Laue-Straße 7 60438 Frankfurt am Main Deutschland
| |
Collapse
|
3
|
Wachtveitl J, Weissbecker J, Boumrifak C, Breyer M, Wießalla T, Shevchenko V, Mager T, Slavov C, Alekseev A, Kovalev K, Gordeliy V, Bamberg E. The voltage dependent sidedness of the reprotonation of the retinal Schiff base determines the unique inward pumping of Xenorhodopsin. Angew Chem Int Ed Engl 2021; 60:23010-23017. [PMID: 34339559 PMCID: PMC8518763 DOI: 10.1002/anie.202103882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 11/07/2022]
Abstract
The new class of microbial rhodopsins, called xenorhodopsins (XeRs) (1), extends the versatility of this family by inward H + pumps (2-4). These pumps are an alternative optogenetic tool to the light-gated ion channels (e.g. ChR1,2), because the activation of electrically excitable cells by XeRs is independent from the surrounding physiological conditions. In this work we functionally and spectroscopically characterized XeR from Nanosalina ( Ns XeR) (1). The photodynamic behavior of Ns XeR was investigated on the ps to s time scale elucidating the formation of the J and K and a previously unknown long-lived intermediate. The pH dependent kinetics reveal that alkalization of the surrounding medium accelerates the photocycle and the pump turnover. In patch-clamp experiments the blue-light illumination of Ns XeR in the M state shows a potential-dependent vectoriality of the photocurrent transients, suggesting a variable accessibility of reprotonation of the retinal Schiff base. Insights on the kinetically independent switching mechanism could furthermore be obtained by mutational studies on the putative intracellular H + acceptor D220.
Collapse
Affiliation(s)
- Josef Wachtveitl
- Goethe-Universität Frankfurt am Main, Physical and Theoretical Chemistry, Max von Laue-Straße 7, 60438, Frankfurt am Main, GERMANY
| | | | - Chokri Boumrifak
- Goethe-Universitat Frankfurt am Main, Biochemistry, Chemistry and Pharmacy, GERMANY
| | | | - Tristan Wießalla
- Max-Planck-Institut fur Biophysik, Biophysical Chemistry, GERMANY
| | - Vitaly Shevchenko
- Forschungszentrum Julich ICG: Forschungszentrum Julich GmbH, Biological Information Processing, GERMANY
| | - Thomas Mager
- Max Planck Institute of Biophysics: Max-Planck-Institut fur Biophysik, Biophysical Chemistry, GERMANY
| | - Chavdar Slavov
- Goethe-Universitat Frankfurt am Main, Chemistry, GERMANY
| | - Alexey Alekseev
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH, Biological Information Processing, GERMANY
| | - Kirill Kovalev
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH, Biological Information Processing, GERMANY
| | - Valentin Gordeliy
- Forschungszentrum Jülich: Forschungszentrum Julich GmbH, Biological Information Processing, GERMANY
| | - Ernst Bamberg
- Max-Planck-Institut fur Biophysik, Biophysical Chemistry, GERMANY
| |
Collapse
|
4
|
Gaulier G, Dietschi Q, Bhattacharyya S, Schmidt C, Montagnese M, Chauvet A, Hermelin S, Chiodini F, Bonacina L, Herrera PL, Rothlisberger U, Rodriguez I, Wolf JP. Ultrafast pulse shaping modulates perceived visual brightness in living animals. SCIENCE ADVANCES 2021; 7:7/18/eabe1911. [PMID: 33910906 PMCID: PMC8081367 DOI: 10.1126/sciadv.abe1911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Vision is usually assumed to be sensitive to the light intensity and spectrum but not to its spectral phase. However, experiments performed on retinal proteins in solution showed that the first step of vision consists in an ultrafast photoisomerization that can be coherently controlled by shaping the phase of femtosecond laser pulses, especially in the multiphoton interaction regime. The link between these experiments in solution and the biological process allowing vision was not demonstrated. Here, we measure the electric signals fired from the retina of living mice upon femtosecond multipulse and single-pulse light stimulation. Our results show that the electrophysiological signaling is sensitive to the manipulation of the light excitation on a femtosecond time scale. The mechanism relies on multiple interactions with the light pulses close to the conical intersection, like pump-dump (photoisomerization interruption) and pump-repump (reverse isomerization) processes. This interpretation is supported both experimentally and by dynamics simulations.
Collapse
Affiliation(s)
- Geoffrey Gaulier
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Quentin Dietschi
- Department of Genetics and Evolution, University of Geneva, 30 Quai Ansermet, 1211 Geneva, Switzerland
| | - Swarnendu Bhattacharyya
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Cédric Schmidt
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Matteo Montagnese
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Adrien Chauvet
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Sylvain Hermelin
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Florence Chiodini
- Biobanque de tissus thérapeutiques, Department of Diagnostic, University Hospitals of Geneva, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Luigi Bonacina
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland
| | - Pedro L Herrera
- Department of Genetic Medicine and Development, University of Geneva, 1 Rue Michel-Servet, 1211 Geneva, Switzerland
| | - Ursula Rothlisberger
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ivan Rodriguez
- Department of Genetics and Evolution, University of Geneva, 30 Quai Ansermet, 1211 Geneva, Switzerland
| | - Jean-Pierre Wolf
- Group of Applied Physics, University of Geneva, 22 Ch. de Pinchat, 1211 Geneva, Switzerland.
| |
Collapse
|
5
|
Agathangelou D, Orozco-Gonzalez Y, Del Carmen Marín M, Roy PP, Brazard J, Kandori H, Jung KH, Léonard J, Buckup T, Ferré N, Olivucci M, Haacke S. Effect of point mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin. Faraday Discuss 2019; 207:55-75. [PMID: 29388996 DOI: 10.1039/c7fd00200a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anabaena sensory rhodopsin (ASR) is a particular microbial retinal protein for which light-adaptation leads to the ability to bind both the all-trans, 15-anti (AT) and the 13-cis, 15-syn (13C) isomers of the protonated Schiff base of retinal (PSBR). In the context of obtaining insight into the mechanisms by which retinal proteins catalyse the PSBR photo-isomerization reaction, ASR is a model system allowing to study, within the same protein, the protein-PSBR interactions for two different PSBR conformers at the same time. A detailed analysis of the vibrational spectra of AT and 13C, and their photo-products in wild-type ASR obtained through femtosecond (pump-) four-wave-mixing is reported for the first time, and compared to bacterio- and channelrhodopsin. As part of an extensive study of ASR mutants with blue-shifted absorption spectra, we present here a detailed computational analysis of the origin of the mutation-induced blue-shift of the absorption spectra, and identify electrostatic interactions as dominating steric effects that would entail a red-shift. The excited state lifetimes and isomerization reaction times (IRT) for the three mutants V112N, W76F, and L83Q are studied experimentally by femtosecond broadband transient absorption spectroscopy. Interestingly, in all three mutants, isomerization is accelerated for AT with respect to wild-type ASR, and this the more, the shorter the wavelength of maximum absorption. On the contrary, the 13C photo-reaction is slightly slowed down, leading to an inversion of the ESLs of AT and 13C, with respect to wt-ASR, in the blue-most absorbing mutant L83Q. Possible mechanisms for these mutation effects, and their steric and electrostatic origins are discussed.
Collapse
Affiliation(s)
- D Agathangelou
- University of Strasbourg, CNRS, Inst. de Physique et Chimie des Matériaux de Strasbourg, 67034 Strasbourg, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mignolet B, Curchod BFE. Steering the outcome of a photochemical reaction-An in silico experiment on the H 2CSO sulfine using few-femtosecond dump pulses. J Chem Phys 2019; 150:101101. [PMID: 30876374 DOI: 10.1063/1.5089124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We propose a pump-dump control scheme using sub-10 fs pulses to enhance the photochemical formation of the three-membered C-S-O ring oxathiirane from the parent H2CSO sulfine molecule. The ultrashort nature of the pulses is essential to promptly alter the photoinduced dynamics, e.g., while a bond is elongating, which is key to selectively form the oxathiirane by radiative dumping. We carried out an in silico pump-dump experiment with excited-state dynamics simulations that include the interaction with electric field of the pump and dump pulses. By applying the dump pulse when the CS bond is elongating, the population transferred to the ground state will form the oxathiirane with a branching ratio of 4, much higher than the one solely due to nonradiative relaxation (0.66). The overall oxathiirane yield can be increased by up to 17% when the 6 fs IR dump pulse is applied at a delay time of 47 fs.
Collapse
Affiliation(s)
- Benoit Mignolet
- Theoretical Physical Chemistry, Research Unit Molecular Systems, B6c, University of Liège, B4000 Liège, Belgium
| | - Basile F E Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
7
|
El Hage K, Brickel S, Hermelin S, Gaulier G, Schmidt C, Bonacina L, van Keulen SC, Bhattacharyya S, Chergui M, Hamm P, Rothlisberger U, Wolf JP, Meuwly M. Implications of short time scale dynamics on long time processes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061507. [PMID: 29308419 PMCID: PMC5741438 DOI: 10.1063/1.4996448] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 05/02/2023]
Abstract
This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.
Collapse
Affiliation(s)
- Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sylvain Hermelin
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Geoffrey Gaulier
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Cédric Schmidt
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Luigi Bonacina
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Siri C van Keulen
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | | | - Majed Chergui
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | | | - Jean-Pierre Wolf
- Department of Applied Physics (GAP), University of Geneva, 22 Ch. de Pinchat, 1211 Geneva 4, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Delor M, Archer SA, Keane T, Meijer AJHM, Sazanovich IV, Greetham GM, Towrie M, Weinstein JA. Directing the path of light-induced electron transfer at a molecular fork using vibrational excitation. Nat Chem 2017; 9:1099-1104. [DOI: 10.1038/nchem.2793] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/05/2017] [Indexed: 11/09/2022]
|
9
|
Quantum Control of Population Transfer and Vibrational States via Chirped Pulses in Four Level Density Matrix Equations. APPLIED SCIENCES-BASEL 2016. [DOI: 10.3390/app6110351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Bader P, Iserles A, Kropielnicka K, Singh P. Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential. Proc Math Phys Eng Sci 2016. [DOI: 10.1098/rspa.2015.0733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We build efficient and unitary (hence stable) methods for the solution of the linear time-dependent Schrödinger equation with explicitly time-dependent potentials in a semiclassical regime. The Magnus–Zassenhaus schemes presented here are based on a combination of the Zassenhaus decomposition (Bader
et al.
2014
Found. Comput. Math.
14
, 689–720. (
doi:10.1007/s10208-013-9182-8
)) with the Magnus expansion of the time-dependent Hamiltonian. We conclude with numerical experiments.
Collapse
Affiliation(s)
- Philipp Bader
- Department of Mathematics, La Trobe University, Kingsbury Drive, Melbourne, 3086 Victoria, Australia
| | - Arieh Iserles
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Karolina Kropielnicka
- Institute of Mathematics, University of Gdańsk, 57 Stwosz Street, 90-952 Gdańsk, Poland
| | - Pranav Singh
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| |
Collapse
|
11
|
Nairat M, Konar A, Lozovoy VV, Beck WF, Blanchard GJ, Dantus M. Controlling S2 Population in Cyanine Dyes Using Shaped Femtosecond Pulses. J Phys Chem A 2016; 120:1876-85. [PMID: 26935762 DOI: 10.1021/acs.jpca.6b01835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast population transfer from higher to lower excited states occurs via internal conversion (IC) and is the basis of Kasha's rule, which states that spontaneous emission takes place from the lowest excited state of the same multiplicity. Photonic control over IC is of interest because it would allow direct influence over intramolecular nonradiative decay processes occurring in condensed phase. Here we tracked the S2 and S1 fluorescence yield for different cyanine dyes in solution as a function of linear chirp. For the cyanine dyes with polar solvation response IR144 and meso-piperidine substituted IR806, increased S2 emission was observed when using transform limited pulses, whereas chirped pulses led to increased S1 emission. The nonpolar solvated cyanine IR806, on the other hand, did not show S2 emission. A theoretical model, based on a nonperturbative solution of the equation of motion for the density matrix, is offered to explain and simulate the anomalous chirp dependence. Our findings, which depend on pulse properties beyond peak intensity, offer a photonic method to control S2 population thereby opening the door for the exploration of photochemical processes initiated from higher excited states.
Collapse
Affiliation(s)
- Muath Nairat
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Arkaprabha Konar
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Vadim V Lozovoy
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - G J Blanchard
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Marcos Dantus
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Physics and Astronomy, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Nuernberger P, Ruetzel S, Brixner T. Multidimensionale elektronische Spektroskopie photochemischer Reaktionen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Nuernberger P, Ruetzel S, Brixner T. Multidimensional Electronic Spectroscopy of Photochemical Reactions. Angew Chem Int Ed Engl 2015; 54:11368-86. [PMID: 26382095 DOI: 10.1002/anie.201502974] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/11/2022]
Abstract
Coherent multidimensional electronic spectroscopy can be employed to unravel various channels in molecular chemical reactions. This approach is thus not limited to analysis of energy transfer or charge transfer (i.e. processes from photophysics), but can also be employed in situations where the investigated system undergoes permanent structural changes (i.e. in photochemistry). Photochemical model reactions are discussed by using the example of merocyanine/spiropyran-based molecular switches, which show a rich variety of reaction channels, in particular ring opening and ring closing, cis-trans isomerization, coherent vibrational wave-packet motion, radical ion formation, and population relaxation. Using pump-probe, pump-repump-probe, coherent two-dimensional and three-dimensional, triggered-exchange 2D, and quantum-control spectroscopy, we gain intuitive pictures on which product emerges from which reactant and which reactive molecular modes are associated.
Collapse
Affiliation(s)
- Patrick Nuernberger
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstrasse 150, 44801 Bochum (Germany)
| | - Stefan Ruetzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany)
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg (Germany).
| |
Collapse
|
14
|
Chenel A, Meier C, Dive G, Desouter-Lecomte M. Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode. J Chem Phys 2015; 142:024307. [DOI: 10.1063/1.4905200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Cheminal A, Léonard J, Kim SY, Jung KH, Kandori H, Haacke S. 100 fs photo-isomerization with vibrational coherences but low quantum yield in Anabaena Sensory Rhodopsin. Phys Chem Chem Phys 2015; 17:25429-39. [DOI: 10.1039/c5cp04353k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Counter-intuitive photochemistry: in Anabaena Sensory Rhodopsin, the retinal 13-cis isomer isomerizes much faster than all-trans ASR, but with a 3-times lower quantum yield.
Collapse
Affiliation(s)
- Alexandre Cheminal
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| | - So-Young Kim
- Department of Life Science and Institute of Biological Interfaces
- Sogang University
- Mapo-Gu
- South Korea
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces
- Sogang University
- Mapo-Gu
- South Korea
| | - Hideki Kandori
- Department of Frontier Materials
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Stefan Haacke
- Institut de Physique et Chimie des Matériaux de Strasbourg & Labex NIE
- Université de Strasbourg – CNRS
- 67034 Strasbourg
- France
| |
Collapse
|
16
|
Marek MS, Buckup T, Southall J, Cogdell RJ, Motzkus M. Highlighting short-lived excited electronic states with pump-degenerate-four-wave-mixing. J Chem Phys 2013; 139:074202. [PMID: 23968082 DOI: 10.1063/1.4818164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Marie S Marek
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
17
|
Ruetzel S, Kullmann M, Buback J, Nuernberger P, Brixner T. Tracing the steps of photoinduced chemical reactions in organic molecules by coherent two-dimensional electronic spectroscopy using triggered exchange. PHYSICAL REVIEW LETTERS 2013; 110:148305. [PMID: 25167047 DOI: 10.1103/physrevlett.110.148305] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Indexed: 06/03/2023]
Abstract
We establish coherent triggered-exchange two-dimensional (TE2D) electronic spectroscopy as an expansion of pump-repump-probe transient absorption spectroscopy and uniquely elucidate the role of higher-lying electronic states in ultrafast photochemistry. As an example, this is demonstrated for a molecular switch present in two ring-open conformations. The formation of a new species-the radical cation-is observed and its precursor state is identified via TE2D.
Collapse
Affiliation(s)
- Stefan Ruetzel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martin Kullmann
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Buback
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
18
|
Chenel A, Dive G, Meier C, Desouter-Lecomte M. Control in a Dissipative Environment: The Example of a Cope Rearrangement. J Phys Chem A 2012; 116:11273-82. [DOI: 10.1021/jp305274y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Chenel
- Laboratoire de Chimie
Physique, Université Paris-Sud and CNRS, UMR 8000, F-91405
Orsay, France
| | - G. Dive
- Centre d’Ingénierie
des Protéines, Université de Liège, Sart Tilman, B6, B-4000 Liège, Belgium
| | - C. Meier
- LCAR-IRSAMC, Université Paul Sabatier, 31062 Toulouse, France
| | - M. Desouter-Lecomte
- Laboratoire de Chimie
Physique, Université Paris-Sud and CNRS, UMR 8000, F-91405
Orsay, France
- Département de Chimie, Université de Liège, Sart Tilman, B6,
B-4000 Liège, Belgium
| |
Collapse
|
19
|
Laser control in open quantum systems: preliminary analysis toward the Cope rearrangement control in methyl-cyclopentadienylcarboxylate dimer. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1236-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Nuernberger P, Wolpert D, Weiss H, Gerber G. Initiation and control of catalytic surface reactions with shaped femtosecond laser pulses. Phys Chem Chem Phys 2012; 14:1185-99. [DOI: 10.1039/c1cp21827a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Buckup T, Hauer J, Voll J, Vivie-Riedle R, Motzkus M. A General control mechanism of energy flow in the excited state of polyenic biochromophores. Faraday Discuss 2011; 153:213-25; discussion 293-319. [DOI: 10.1039/c1fd00037c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Ruetzel S, Stolzenberger C, Fechner S, Dimler F, Brixner T, Tannor DJ. Molecular quantum control landscapes in von Neumann time-frequency phase space. J Chem Phys 2010; 133:164510. [DOI: 10.1063/1.3495950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Strong-field control and spectroscopy of attosecond electron-hole dynamics in molecules. Proc Natl Acad Sci U S A 2009; 106:16556-61. [PMID: 19805337 DOI: 10.1073/pnas.0907434106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular structures, dynamics and chemical properties are determined by shared electrons in valence shells. We show how one can selectively remove a valence electron from either Pi vs. Sigma or bonding vs. nonbonding orbital by applying an intense infrared laser field to an ensemble of aligned molecules. In molecules, such ionization often induces multielectron dynamics on the attosecond time scale. Ionizing laser field also allows one to record and reconstruct these dynamics with attosecond temporal and sub-Angstrom spatial resolution. Reconstruction relies on monitoring and controlling high-frequency emission produced when the liberated electron recombines with the valence shell hole created by ionization.
Collapse
|
24
|
Control of retinal isomerization in bacteriorhodopsin in the high-intensity regime. Proc Natl Acad Sci U S A 2009; 106:10896-900. [PMID: 19564608 DOI: 10.1073/pnas.0904589106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A learning algorithm was used to manipulate optical pulse shapes and optimize retinal isomerization in bacteriorhodopsin, for excitation levels up to 1.8 x 10(16) photons per square centimeter. Below 1/3 the maximum excitation level, the yield was not sensitive to pulse shape. Above this level the learning algorithm found that a Fourier-transform-limited (TL) pulse maximized the 13-cis population. For this optimal pulse the yield increases linearly with intensity well beyond the saturation of the first excited state. To understand these results we performed systematic searches varying the chirp and energy of the pump pulses while monitoring the isomerization yield. The results are interpreted including the influence of 1-photon and multiphoton transitions. The population dynamics in each intermediate conformation and the final branching ratio between the all-trans and 13-cis isomers are modified by changes in the pulse energy and duration.
Collapse
|
25
|
Marquetand P, Nuernberger P, Brixner T, Engel V. Molecular dump processes induced by chirped laser pulses. J Chem Phys 2008; 129:074303. [DOI: 10.1063/1.2960581] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Carroll EC, Florean AC, Bucksbaum PH, Spears KG, Sension RJ. Phase control of the competition between electronic transitions in a solvated laser dye. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Barbatti M, Belz S, Leibscher M, Lischka H, Manz J. Sensitivity of femtosecond quantum dynamics and control with respect to non-adiabatic couplings: Model simulations for the cis–trans isomerization of the dideuterated methaniminium cation. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
|
29
|
Dietzek B, Brüggemann B, Pascher T, Yartsev A. Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye. J Am Chem Soc 2007; 129:13014-21. [PMID: 17924621 DOI: 10.1021/ja072639+] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using optimal control as a spectroscopic tool we decipher the details of the molecular dynamics of the essential multidimensional excited-state photoisomerization - a fundamental chemical reaction of key importance in biology. Two distinct nuclear motions are identified in addition to the overall bond-twisting motion: Initially, the reaction is dominated by motion perpendicular to the torsion coordinate. At later times, a second optically active vibration drives the system along the reaction path to the bottom of the excited-state potential. The time scales of the wavepacket motion on a different part of the excited-state potential are detailed by pump-shaped dump optimal control. This technique offers new means to control a chemical reaction far from the Franck-Condon point of absorption and to map details of excited-state reaction pathways revealing unique insights into the underlying reaction mechanism.
Collapse
Affiliation(s)
- Benjamin Dietzek
- Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | | | | | | |
Collapse
|
30
|
Nuernberger P, Vogt G, Brixner T, Gerber G. Femtosecond quantum control of molecular dynamics in the condensed phase. Phys Chem Chem Phys 2007; 9:2470-97. [PMID: 17508081 DOI: 10.1039/b618760a] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We review the progress in controlling quantum dynamical processes in the condensed phase with femtosecond laser pulses. Due to its high particle density the condensed phase has both high relevance and appeal for chemical synthesis. Thus, in recent years different methods have been developed to manipulate the dynamics of condensed-phase systems by changing one or multiple laser pulse parameters. Single-parameter control is often achieved by variation of the excitation pulse's wavelength, its linear chirp or its temporal subpulse separation in case of pulse sequences. Multiparameter control schemes are more flexible and provide a much larger parameter space for an optimal solution. This is realized in adaptive femtosecond quantum control, in which the optimal solution is iteratively obtained through the combination of an experimental feedback signal and an automated learning algorithm. Several experiments are presented that illustrate the different control concepts and highlight their broad applicability. These fascinating achievements show the continuous progress on the way towards the control of complex quantum reactions in the condensed phase.
Collapse
Affiliation(s)
- Patrick Nuernberger
- Universität Würzburg, Physikalisches Institut, Am Hubland, 97074 Würzburg, Germany
| | | | | | | |
Collapse
|