Matsugi A, Suma K, Miyoshi A. Deuterium kinetic isotope effects on the gas-phase reactions of C2H with H2(D2) and CH4(CD4).
Phys Chem Chem Phys 2011;
13:4022-31. [PMID:
21240398 DOI:
10.1039/c0cp02056g]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Kinetics of the ethynyl (C(2)H) radical reactions with H(2), D(2), CH(4) and CD(4) was studied over the temperature range of 295-396 K by a pulsed laser photolysis/chemiluminescence technique. The C(2)H radicals were generated by ArF excimer-laser photolysis of C(2)H(2) or CF(3)C(2)H and were monitored by the chemiluminescence of CH(A(2)Δ) produced by their reaction with O(2) or O((3)P). The measured absolute rate constants for H(2) and CH(4) agreed well with the available literature data. The primary kinetic isotope effects (KIEs) were determined to be k(H(2))/k(D(2)) = 2.48 ± 0.14 and k(CH(4))/k(CD(4)) = 2.45 ± 0.16 at room temperature. Both of the KIEs increased as the temperature was lowered. The KIEs were analyzed by using the variational transition state theory with semiclassical small-curvature tunneling corrections. With anharmonic corrections on the loose transitional vibrational modes of the transition states, the theoretical predictions satisfactorily reproduced the experimental KIEs for both C(2)H + H(2)(D(2)) and C(2)H + CH(4)(CD(4)) reactions.
Collapse