1
|
Xu YS, Die D, Zheng BX. Growth pattern and electronic and magnetic properties of Cr-doped silver clusters. J Comput Chem 2023; 44:2284-2293. [PMID: 37578012 DOI: 10.1002/jcc.27197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Growth pattern and electronic and magnetic properties of Agn Cr (n = 1-16) clusters have been investigated via density functional theory (DFT) combined with CALYPSO structure search method. The optimized geometry shows that the growth of the global minimum structures of Agn Cr clusters have obvious rule. when n > 12, silver atoms grow around an icosahedron which is almost unchanged in each structure. Analyses of electronic properties indicate that the doped Cr atom can only enhance the stability of larger silver clusters. Optical absorption and photoelectron spectra of Agn Cr isomers have been predicted and can be used for their structural identification. The icosahedral Ag12 Cr cluster with large energy level gap can be seen as a superatom. The adsorption capacity of Cr atom in Agn Cr cluster to CO is much higher than that of free Cr atom. The intensity of IR and Ramam spectra can be dramatically enhanced when CO is absorbed on Agn Cr cluster that Cr atom is encapsulated by Ag atoms. Moreover, the red shift of IR and Raman spectra of CO adsorbed on these clusters is also very small compared to free CO. Magnetism calculations show that the magnetic moment of Agn Cr clusters decreases linearly from n = 6 to 12 and increases linearly from n = 12 to 16. The total magnetic moment of Agn Cr cluster is mainly localized on the Cr atom. The change of magnetic moment of Cr atom is related to the charge transfer between Cr and Ag atoms.
Collapse
Affiliation(s)
- Yu-Sheng Xu
- School of Science, Xihua University, Chengdu, China
| | - Dong Die
- School of Science, Xihua University, Chengdu, China
| | | |
Collapse
|
2
|
Huang TX, Yuan YQ, Ding JJ, Li YY, Li QY, Chen GL, Lin W. Probing the Structural Evolution, Stabilities and Properties of LiBn (n = 2–12) Clusters. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
Negishi Y. Metal-nanocluster Science and Technology: My Personal History and Outlook. Phys Chem Chem Phys 2022; 24:7569-7594. [DOI: 10.1039/d1cp05689a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal nanoclusters (NCs) are among the leading targets in research of nanoscale materials, and elucidation of their properties (science) and development of control techniques (technology) have been continuously studied for...
Collapse
|
4
|
Kawawaki T, Ebina A, Hosokawa Y, Ozaki S, Suzuki D, Hossain S, Negishi Y. Thiolate-Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005328. [PMID: 33522090 DOI: 10.1002/smll.202005328] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Metal nanoclusters (NCs), which are composed of about 250 or fewer metal atoms, possess great potential as novel functional materials. Fundamental research on metal NCs gradually started in the 1960s, and since 2000, thiolate (SR)-protected metal NCs have been the main metal NCs actively studied. The precise and systematic isolation of SR-protected metal NCs has been achieved in 2005. Since then, research on SR-protected metal NCs for both basic science and practical application has rapidly expanded. This review describes this recent progress in the field of SR-protected metal NCs in three areas: synthesis, understanding, and application. Specifically, the recent study of alloy NCs and connected structures composed of NCs is highlighted in the "synthesis" section, recent knowledge on the reactivity of NCs in solution is highlighted in the "understanding" section, and the applications of NCs in the energy and environmental field are highlighted in the "application" section. This review provides insight on the current state of research on SR-protected metal NCs and discusses the challenges to be overcome for further development in this field as well as the possibilities that these materials can contribute to solving the problems facing modern society.
Collapse
Affiliation(s)
- Tokuhisa Kawawaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Ayano Ebina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yasunaga Hosokawa
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shuhei Ozaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Daiki Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Sakiat Hossain
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Photocatalysis International Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
5
|
Affiliation(s)
- Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Qiuying Du
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Vijay Kumar
- Center for Informatics, School of Natural Sciences, Shiv Nadar University, NH-91, Tehsil Dadri, Gautam Buddha Nagar 201314, U. P., India
- Dr. Vijay Kumar Foundation, 1969 Sector 4, Gurgaon 122001, Haryana, India
| |
Collapse
|
6
|
Minamikawa K, Arakawa M, Tono K, Terasaki A. A revisit to electronic structures of cobalt-doped silver cluster anions by size-dependent reactivity measurement. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Negishi Y, Hashimoto S, Ebina A, Hamada K, Hossain S, Kawawaki T. Atomic-level separation of thiolate-protected metal clusters. NANOSCALE 2020; 12:8017-8039. [PMID: 32207494 DOI: 10.1039/d0nr00824a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fine metal clusters have attracted much attention from the viewpoints of both basic and applied science for many years because of their unique physical/chemical properties and functions, which differ from those of bulk metals. Among these materials, thiolate (SR)-protected gold clusters (Aun(SR)m clusters) have been the most studied metal clusters since 2000 because of their ease of synthesis and handling. However, in the early 2000s, it was not easy to isolate these metal clusters. Therefore, high-resolution separation methods were explored, and several atomic-level separation methods, including polyacrylamide gel electrophoresis (PAGE), high-performance liquid chromatography (HPLC), and thin-layer chromatography (TLC), were successively established. These techniques have made it possible to isolate a series of Aun(SR)m clusters, and much knowledge has been obtained on the correlation between the chemical composition and fundamental properties such as the stability, electronic structure, and physical properties of Aun(SR)m clusters. In addition, these high-resolution separation techniques are now also frequently used to evaluate the distribution of the product and to track the reaction process. In this way, high-resolution separation techniques have played an essential role in the study of Aun(SR)m clusters. However, only a few reviews have focused on this work. This review focuses on PAGE, HPLC, and TLC separation techniques, which offer high resolution and repeatability, and summarizes previous studies on the high-resolution separation of Aun(SR)m and related clusters with the purpose of promoting a better understanding of the features and the utility of these techniques.
Collapse
Affiliation(s)
- Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | | | | | | | | | | |
Collapse
|
8
|
Sarugaku S, Murakami R, Matsumoto J, Kawano T, Arakawa M, Terasaki A. Size-dependent Reactivity of Nickel-doped Silver Cluster Cations toward Oxygen: Electronic and Geometric Effects. CHEM LETT 2017. [DOI: 10.1246/cl.161094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Pham HT, Cuong NT, Tam NM, Tung NT. A Systematic Investigation on CrCun Clusters with n = 9-16: Noble Gas and Tunable Magnetic Property. J Phys Chem A 2016; 120:7335-43. [PMID: 27556591 DOI: 10.1021/acs.jpca.6b04221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A systematic investigation on structure, dissociation behavior, chemical bonding, and magnetic property of Cr-doped Cun clusters (n = 9-16) is carried out using the mean of density functional theory calculations. It is found that CrCu12 is a crucial size, preferring an icosahedral Cu12 cage with the central Cr dopant. Smaller cluster sizes appear as on the way to form the CrCu12 icosahedron while larger ones are produced by attaching additional Cu atoms to the CrCu12 core. The presence of Cr dopant obviously enhances the stability of CrCun clusters in comparison to that of pure counterparts. Exceptionally stable CrCu12 has an 18-electron closed-shell electronic structure, mimicking a noble gas in the viewpoint of superatom concept. Analysis on cluster electronic structure shows that the interplay between 3d orbitals of Cr and 4s orbitals of Cu has a vital role on the magnetic properties of CrCun clusters.
Collapse
Affiliation(s)
- Hung Tan Pham
- Institute for Computational Science and Technology , Ho Chi Minh City, Vietnam
| | - Ngo Tuan Cuong
- Center for Computational Science, Hanoi National University of Education , Hanoi, Vietnam
| | - Nguyen Minh Tam
- Computational Chemistry Research Group & Faculty of Applied Sciences, Ton Duc Thang University , Ho Chi Minh City, Vietnam
| | - Nguyen Thanh Tung
- Institute of Materials Science, Vietnam Academy of Science and Technology , Hanoi, Vietnam
| |
Collapse
|
10
|
Hirsch K, Zamudio-Bayer V, Langenberg A, Niemeyer M, Langbehn B, Möller T, Terasaki A, Issendorff BV, Lau JT. Magnetic moments of chromium-doped gold clusters: the Anderson impurity model in finite systems. PHYSICAL REVIEW LETTERS 2015; 114:087202. [PMID: 25768776 DOI: 10.1103/physrevlett.114.087202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Indexed: 05/26/2023]
Abstract
The magnetic moment of a single impurity atom in a finite free electron gas is studied in a combined x-ray magnetic circular dichroism spectroscopy, charge transfer multiplet calculation, and density functional theory study of size-selected free chromium-doped gold clusters. The observed size dependence of the local magnetic moment can be understood as a transition from a local moment to a mixed valence regime. This shows that the Anderson impurity model essentially describes finite systems even though the discrete density of states introduces a significant deviation from a bulk metal, and the free electron gas is only formed by less than 10 electrons. Electronic shell closure in the gold host minimizes the interaction of localized impurity states with the confined free electron gas and preserves the magnetic moment of 5 μ_{B} fully in CrAu_{2}^{+} and almost fully in CrAu_{6}^{+}. Even for open-shell species, large local moments are observed that scale with the energy gap of the gold cluster. This indicates that an energy gap in the free electron gas stabilizes the local magnetic moment of the impurity atom.
Collapse
Affiliation(s)
- K Hirsch
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - V Zamudio-Bayer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - A Langenberg
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - M Niemeyer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - B Langbehn
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - T Möller
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - A Terasaki
- Cluster Research Laboratory, Toyota Technological Institute, 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
- Department of Chemistry, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - B V Issendorff
- Physikalisches Institut, Universität Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - J T Lau
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| |
Collapse
|
11
|
|
12
|
|
13
|
Majer K, Lei M, Hock C, von Issendorff B, Aguado A. Structural and electronic properties of oxidized sodium clusters: A combined photoelectron and density functional study. J Chem Phys 2009; 131:204313. [DOI: 10.1063/1.3267056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|