2
|
Exploring the Ruthenium-Ligands Bond and Their Relative Properties at Different Computational Methods. J CHEM-NY 2016. [DOI: 10.1155/2016/3672062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report some experimental bond distances and computational models of six ruthenium bonds obtained from DFT to higher computational methods like MP2 and CCSD. The bonds distances, geometrical RMSD, and the thermodynamic properties of the models from different computational methods are similar. It is observed that optimization of molecules of many light atoms with different functional methods results in significant geometrical variation in the values and order of the computed properties. The values of the hyperpolarizabilities, HOMO, LUMO, and isotropic and anisotropic shielding are found to depend greatly on the type of the functional used and the geometrical variation rather than on the nature of basis set used. However, all the methods rated modelled Ru-S, Ru-Cl, and Ru-O bonds as having the highest hyperpolarizabilities values. The infrared spectra data obtained from the different computational methods are significantly different from each other except for MP2 and CCSD which are found to be very similar.
Collapse
|
3
|
Jedidi A, Li R, Fornasiero P, Cavallo L, Carbonniere P. Vibrational Fingerprints of Low-Lying Pt(n)P(2n) (n = 1-5) Cluster Structures from Global Optimization Based on Density Functional Theory Potential Energy Surfaces. J Phys Chem A 2015; 119:11711-8. [PMID: 26566005 DOI: 10.1021/acs.jpca.5b08495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vibrational fingerprints of small Pt(n)P(2n) (n = 1-5) clusters were computed from their low-lying structures located from a global exploration of their DFT potential energy surfaces with the GSAM code. Five DFT methods were assessed from the CCSD(T) wavenumbers of PtP2 species and CCSD relative energies of Pt2P4 structures. The eight first Pt(n)P(2n) isomers found are reported. The vibrational computations reveal (i) the absence of clear signatures made by overtone or combination bands due to very weak mechanical and electrical anharmonicities and (ii) some significant and recurrent vibrational fingerprints in correlation with the different PP bonding situations in the Pt(n)P(2n) structures.
Collapse
Affiliation(s)
- Abdesslem Jedidi
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST) , 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Rui Li
- Groupe de Chimie Théorique et Réactivité, IPREM/ECP UMR CNRS 5254, Université de Pau et des Pays de l'Adour , F-64000 Pau, France
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM, ICCOM-CNR, University of Trieste , Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Luigi Cavallo
- Division of Physical Sciences and Engineering, KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST) , 4700 KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Philippe Carbonniere
- Groupe de Chimie Théorique et Réactivité, IPREM/ECP UMR CNRS 5254, Université de Pau et des Pays de l'Adour , F-64000 Pau, France
| |
Collapse
|
5
|
Thicoipe S, Carbonniere P, Pouchan C. The Use of the GSAM Approach for the Structural Investigation of Low-Lying Isomers of Molecular Clusters from Density-Functional-Theory-Based Potential Energy Surfaces: The Structures of Microhydrated Nucleic Acid Bases. J Phys Chem A 2013; 117:7236-45. [DOI: 10.1021/jp401130a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandrine Thicoipe
- Groupe de Chimie Théorique et Réactivité,
IPREM/ECP UMR CNRS 5254, Université de Pau et des Pays de l’Adour, F-64000 Pau, France
| | - Philippe Carbonniere
- Groupe de Chimie Théorique et Réactivité,
IPREM/ECP UMR CNRS 5254, Université de Pau et des Pays de l’Adour, F-64000 Pau, France
| | - Claude Pouchan
- Groupe de Chimie Théorique et Réactivité,
IPREM/ECP UMR CNRS 5254, Université de Pau et des Pays de l’Adour, F-64000 Pau, France
| |
Collapse
|
10
|
Smirnova IN, Cuisset A, Hindle F, Mouret G, Bocquet R, Pirali O, Roy P. Gas-Phase Synchrotron FTIR Spectroscopy of Weakly Volatile Alkyl Phosphonate and Alkyl Phosphate Compounds: Vibrational and Conformational Analysis in the Terahertz/Far-IR Spectral Domain. J Phys Chem B 2010; 114:16936-47. [DOI: 10.1021/jp108421c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. N. Smirnova
- Laboratoire de Physico-Chimie de l’Atmosphère, EAC CNRS 4493, Université du Littoral Côte d’Opale, 189 A Ave. Maurice Schumann, 59140 Dunkerque, France; Physics Department, M. V. Lomonosov Moscow State University, Moscow, Russia; Ligne AILES (Advance InfraRed Line Exploited for Spectroscopy), Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; and Institut des Sciences Moléculaires d’Orsay, UMR 8214, Bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France
| | - A. Cuisset
- Laboratoire de Physico-Chimie de l’Atmosphère, EAC CNRS 4493, Université du Littoral Côte d’Opale, 189 A Ave. Maurice Schumann, 59140 Dunkerque, France; Physics Department, M. V. Lomonosov Moscow State University, Moscow, Russia; Ligne AILES (Advance InfraRed Line Exploited for Spectroscopy), Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; and Institut des Sciences Moléculaires d’Orsay, UMR 8214, Bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France
| | - F. Hindle
- Laboratoire de Physico-Chimie de l’Atmosphère, EAC CNRS 4493, Université du Littoral Côte d’Opale, 189 A Ave. Maurice Schumann, 59140 Dunkerque, France; Physics Department, M. V. Lomonosov Moscow State University, Moscow, Russia; Ligne AILES (Advance InfraRed Line Exploited for Spectroscopy), Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; and Institut des Sciences Moléculaires d’Orsay, UMR 8214, Bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France
| | - G. Mouret
- Laboratoire de Physico-Chimie de l’Atmosphère, EAC CNRS 4493, Université du Littoral Côte d’Opale, 189 A Ave. Maurice Schumann, 59140 Dunkerque, France; Physics Department, M. V. Lomonosov Moscow State University, Moscow, Russia; Ligne AILES (Advance InfraRed Line Exploited for Spectroscopy), Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; and Institut des Sciences Moléculaires d’Orsay, UMR 8214, Bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France
| | - R. Bocquet
- Laboratoire de Physico-Chimie de l’Atmosphère, EAC CNRS 4493, Université du Littoral Côte d’Opale, 189 A Ave. Maurice Schumann, 59140 Dunkerque, France; Physics Department, M. V. Lomonosov Moscow State University, Moscow, Russia; Ligne AILES (Advance InfraRed Line Exploited for Spectroscopy), Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; and Institut des Sciences Moléculaires d’Orsay, UMR 8214, Bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France
| | - O. Pirali
- Laboratoire de Physico-Chimie de l’Atmosphère, EAC CNRS 4493, Université du Littoral Côte d’Opale, 189 A Ave. Maurice Schumann, 59140 Dunkerque, France; Physics Department, M. V. Lomonosov Moscow State University, Moscow, Russia; Ligne AILES (Advance InfraRed Line Exploited for Spectroscopy), Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; and Institut des Sciences Moléculaires d’Orsay, UMR 8214, Bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France
| | - P. Roy
- Laboratoire de Physico-Chimie de l’Atmosphère, EAC CNRS 4493, Université du Littoral Côte d’Opale, 189 A Ave. Maurice Schumann, 59140 Dunkerque, France; Physics Department, M. V. Lomonosov Moscow State University, Moscow, Russia; Ligne AILES (Advance InfraRed Line Exploited for Spectroscopy), Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France; and Institut des Sciences Moléculaires d’Orsay, UMR 8214, Bâtiment 210, Université Paris-Sud, 91405 Orsay Cedex, France
| |
Collapse
|
11
|
Hayashi S, Dargelos A, Pouchan C. Theoretical study of the low lying states of Ga(2)X (X = P, As). J Phys Chem A 2010; 114:9515-22. [PMID: 20707416 DOI: 10.1021/jp102943q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the low lying electronic states of Ga(2)X (X = P, As) are nearly degenerate, an accurate determination of the electronic structure of these states was incomplete in the previous works. In this study, the geometry optimization and vibrational frequency calculation have been performed at the various levels of theory, using the effective core pseudopotentials of the Ga and As atoms and the associated cc-pVTZ basis sets. The ground state of Ga(2)P is found to be the (2)A' state correlating with the (2)B(2) state in C(2v) structure, which lies 0.031 eV above the global minimum at the RCCSD(T) level. The equilibrium of the (2)A(1) state is optimized above that of the (2)B(2) state, and the (2)B(1) state, predicted previously as the ground state, has a stable minimum above the optimized geometries of the former states. Concerning the low lying states of Ga(2)As, our results confirm in general the previous studies. Because all the states of both compounds can be considered monoconfigurational around their equilibrium, the RCCSD(T) method is well adapted to acurrately describe both systems. In turn, we have applied our obtained information to analyze the Ga(2)P(-) and Ga(2)As(-) anion photoelectron spectra, to which it remains difficult to appropriately assign the low lying states of Ga(2)P and Ga(2)As. As a consequence, our analysis supports the previous assignment for Ga(2)P, but contrasts partially to that for Ga(2)As.
Collapse
Affiliation(s)
- S Hayashi
- IPREM-UMR5254-ECP Groupe Chimie Théorique et Réactivité, Université de Pau et des Pays de l'Adour, Hélioparc Pau-Pyrénées, 2 Av. P. Angot, 64053 Pau Cedex9, France.
| | | | | |
Collapse
|