1
|
Peng WK, Chen L, Boehm BO, Han J, Loh TP. Molecular phenotyping of oxidative stress in diabetes mellitus with point-of-care NMR system. NPJ Aging Mech Dis 2020; 6:11. [PMID: 33083002 PMCID: PMC7536436 DOI: 10.1038/s41514-020-00049-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus is one of the fastest-growing health burdens globally. Oxidative stress, which has been implicated in the pathogenesis of diabetes complication (e.g., cardiovascular event), remains poorly understood. We report a new approach to rapidly manipulate and evaluate the redox states of blood using a point-of-care NMR system. Various redox states of the hemoglobin were mapped out using the newly proposed (pseudo) two-dimensional map known as T1-T2 magnetic state diagram. We exploit the fact that oxidative stress changes the subtle molecular motion of water proton in the blood, and thus inducing a measurable shift in magnetic resonance relaxation properties. We demonstrated the clinical utilities of this technique to rapidly stratify diabetes subjects based on their oxidative status in conjunction to the traditional glycemic level to improve the patient stratification and thus the overall outcome of clinical diabetes care and management.
Collapse
Affiliation(s)
- Weng Kung Peng
- Precision Medicine–Engineering Group, International Iberian Nanotechnology Laboratory, Braga, Portugal
- BioSystems & Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Lan Chen
- BioSystems & Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Bernhard O. Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Ulm University Medical Centre, Department of Internal Medicine 1, Ulm University, Ulm, Germany
- Imperial College London, London, UK
| | - Jongyoon Han
- BioSystems & Micromechanics IRG (BioSyM), Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 36-841, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 36-841, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074 Singapore
| |
Collapse
|
2
|
Peng WK, Ng TT, Loh TP. Machine learning assistive rapid, label-free molecular phenotyping of blood with two-dimensional NMR correlational spectroscopy. Commun Biol 2020; 3:535. [PMID: 32985608 PMCID: PMC7522972 DOI: 10.1038/s42003-020-01262-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 01/02/2023] Open
Abstract
Translation of the findings in basic science and clinical research into routine practice is hampered by large variations in human phenotype. Developments in genotyping and phenotyping, such as proteomics and lipidomics, are beginning to address these limitations. In this work, we developed a new methodology for rapid, label-free molecular phenotyping of biological fluids (e.g., blood) by exploiting the recent advances in fast and highly efficient multidimensional inverse Laplace decomposition technique. We demonstrated that using two-dimensional T1-T2 correlational spectroscopy on a single drop of blood (<5 μL), a highly time- and patient-specific 'molecular fingerprint' can be obtained in minutes. Machine learning techniques were introduced to transform the NMR correlational map into user-friendly information for point-of-care disease diagnostic and monitoring. The clinical utilities of this technique were demonstrated through the direct analysis of human whole blood in various physiological (e.g., oxygenated/deoxygenated states) and pathological (e.g., blood oxidation, hemoglobinopathies) conditions.
Collapse
Affiliation(s)
- Weng Kung Peng
- Precision Medicine - Engineering Group, International Iberian Nanotechnology Laboratory, 4715 330, Braga, Portugal.
| | - Tian-Tsong Ng
- Institute for Infocomm Research, Fusionopolis Way, Singapore, Singapore
| | - Tze Ping Loh
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore.
| |
Collapse
|
3
|
Duong NT, Yarava JR, Trébosc J, Nishiyama Y, Amoureux JP. Forcing the 'lazy' protons to work. Phys Chem Chem Phys 2018; 20:25829-25840. [PMID: 30285019 DOI: 10.1039/c8cp03601b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The combination of cross-polarization (CP) with flip-back (FB) pulse has enabled in NMR the enhancement of 13C sensitivity and the decrease of the recycling delay at both moderate and fast magic-angle spinning (MAS) frequencies. However, only continuous-wave (CW) decoupling is presently compatible with FB-pulse (FB-CW), and depending on the CW radio-frequency (rf) field, either an insignificant sensitivity gain or an acquisition time-dependent gain and a low 13C resolution are obtained. In this study, we propose a new FB-pulse method in which radio frequency-driven recoupling (RFDR) is used as the 1H-13C decoupling scheme to overcome these drawbacks. The performances of FB-RFDR in terms of decoupling efficiency and sensitivity gain are tested on both natural abundance (NA) and uniformly 13C-15N labeled l-histidine·HCl·H2O (Hist) samples at a MAS frequency of νR = 70 kHz. The results show the superiority of RFDR over the CW decoupling with respect to these criteria. Importantly, they reveal that the sensitivity gain offered by FB-RFDR is nearly independent of the decoupling/acquisition duration. The application of FB-RFDR on NA-Hist and sucrose yields a sensitivity gain between 60 and 100% compared to conventional FB-CW and CPMAS-SPINAL experiments. Moreover, we compare the 13C sensitivities of NA-Hist obtained by our 1D FB-RFDR method and 2D 1H-{13C} double-CP acquisition. Both methods provide similar 13C sensitivity and are complementary. Indeed, the 2D method has the advantage of also providing the 1H-13C spatial proximities, but its sensitivity for quaternary carbons is limited; whereas our 1D FB-RFDR method is more independent of the type of carbon, and can provide a 13C 1D spectrum in a shorter experimental time. We also test the feasibility of FB-RFDR at a moderate frequency of νR = 20 kHz, but the experimental results demonstrate a poor resolution as well as a negligible sensitivity gain.
Collapse
Affiliation(s)
- Nghia Tuan Duong
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
4
|
Shen M, Trébosc J, Lafon O, Gan Z, Pourpoint F, Hu B, Chen Q, Amoureux JP. Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2015; 72:104-117. [PMID: 26411981 DOI: 10.1016/j.ssnmr.2015.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
Under Magic-Angle Spinning (MAS), a long radio-frequency (rf) pulse applied on resonance achieves the selective excitation of the center-band of a wide NMR spectrum. We show herein that these rf pulses can be applied on the indirect channel of Hetero-nuclear Multiple-Quantum Correlation (HMQC) sequences, which facilitate the indirect detection via spin-1/2 isotopes of nuclei exhibiting wide spectra. Numerical simulations show that this indirect excitation method is applicable to spin-1/2 nuclei experiencing a large chemical shift anisotropy, as well as to spin-1 isotopes subject to a large quadrupole interaction, such as (14)N. The performances of the long pulses are analyzed by the numerical simulations of scalar-mediated HMQC (J-HMQC) experiments indirectly detecting spin-1/2 or spin-1 nuclei, as well as by dipolar-mediated HMQC (D-HMQC) experiments achieving indirect detection of (14)N nuclei via (1)H in crystalline γ-glycine and N-acetyl-valine samples at a MAS frequency of 60kHz. We show on these solids that for the acquisition of D-HMQC spectra between (1)H and (14)N nuclei, the efficiency of selective moderate excitation with long-pulses at the (14)N Larmor frequency, ν0((14)N), is comparable to those with strong excitation pulses at ν0((14)N) or 2ν0((14)N) frequencies, given the rf field delivered by common solid-state NMR probes. Furthermore, the D-HMQC experiments also demonstrate that the use of long pulses does not produce significant spectral distortions along the (14)N dimension. In summary, the use of center-band selective weak pulses is advantageous for HMQC experiments achieving the indirect detection of wide spectra since it (i) requires a moderate rf field, (ii) can be easily optimized, (iii) displays a high robustness to CSAs, offsets, rf-field inhomogeneities, and fluctuations in MAS frequency, and (iv) is little dependent on the quadrupolar coupling constant.
Collapse
Affiliation(s)
- Ming Shen
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Julien Trébosc
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France
| | - Olivier Lafon
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France.
| | - Zhehong Gan
- Center of Interdisciplinary Magnetic Resonance, NHMFL, Tallahassee, FL 32310, USA
| | | | - Bingwen Hu
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Qun Chen
- Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Jean-Paul Amoureux
- UCCS, CNRS, UMR 8181, University of Lille, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
5
|
Li S, Trébosc J, Lafon O, Zhou L, Shen M, Pourpoint F, Amoureux JP, Deng F. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 251:36-42. [PMID: 25557861 DOI: 10.1016/j.jmr.2014.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/28/2014] [Accepted: 11/30/2014] [Indexed: 06/04/2023]
Abstract
The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of (1)H and (13)C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) (1)H-(13)C correlations with (1)H detection and (ii) (1)H-(1)H double-quantum↔single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of l-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to (13)C detection, we show that (1)H detection leads to a 3-fold enhancement in sensitivity for (1)H-(13)C 2D correlation experiments. By combining (1)H-(13)C and (1)H-(1)H 2D correlation experiments with the analysis of (13)C longitudinal relaxation times, we have been able to assign the (1)H and (13)C signals of each l-alanine ligand.
Collapse
Affiliation(s)
- Shenhui Li
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Julien Trébosc
- Univ. Lille North of France, Unit of Catalysis and Chemistry of Solids (UCCS), CNRS UMR 8181, ENSCL, Univ. Lille 1, Villeneuve d'Ascq 59652, France
| | - Olivier Lafon
- Univ. Lille North of France, Unit of Catalysis and Chemistry of Solids (UCCS), CNRS UMR 8181, ENSCL, Univ. Lille 1, Villeneuve d'Ascq 59652, France.
| | - Lei Zhou
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ming Shen
- Univ. Lille North of France, Unit of Catalysis and Chemistry of Solids (UCCS), CNRS UMR 8181, ENSCL, Univ. Lille 1, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China
| | - Frédérique Pourpoint
- Univ. Lille North of France, Unit of Catalysis and Chemistry of Solids (UCCS), CNRS UMR 8181, ENSCL, Univ. Lille 1, Villeneuve d'Ascq 59652, France
| | - Jean-Paul Amoureux
- Univ. Lille North of France, Unit of Catalysis and Chemistry of Solids (UCCS), CNRS UMR 8181, ENSCL, Univ. Lille 1, Villeneuve d'Ascq 59652, France; Physics Department & Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China.
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
6
|
Kamihara T, Murakami M, Noda Y, Takeda K, Takegoshi K. COMPOZER-based longitudinal cross-polarization via dipolar coupling under MAS. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 245:94-97. [PMID: 25023565 DOI: 10.1016/j.jmr.2014.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 06/03/2023]
Abstract
We propose a cross polarization (CP) sequence effective under magic-angle spinning (MAS) which is tolerant to RF field inhomogeneity and Hartmann-Hahn mismatch. Its key feature is that spin locking is not used, as CP occurs among the longitudinal (Z) magnetizations modulated by the combination of two pulses with the opposite phases. We show that, by changing the phases of the pulse pairs synchronized with MAS, the flip-flop term of the dipolar interaction is restored under MAS.
Collapse
Affiliation(s)
- Takayuki Kamihara
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Miwa Murakami
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan
| | - Yasuto Noda
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuyuki Takeda
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - K Takegoshi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Dawson DM, Jamieson LE, Mohideen MIH, McKinlay AC, Smellie IA, Cadou R, Keddie NS, Morris RE, Ashbrook SE. High-resolution solid-state 13C NMR spectroscopy of the paramagnetic metal–organic frameworks, STAM-1 and HKUST-1. Phys Chem Chem Phys 2013. [DOI: 10.1039/c2cp43445h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Harris KJ, Lupulescu A, Lucier BEG, Frydman L, Schurko RW. Broadband adiabatic inversion pulses for cross polarization in wideline solid-state NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 224:38-47. [PMID: 23023623 PMCID: PMC5081099 DOI: 10.1016/j.jmr.2012.08.015] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 08/16/2012] [Accepted: 08/19/2012] [Indexed: 05/14/2023]
Abstract
Efficient acquisition of ultra-wideline solid-state NMR powder patterns is a continuing challenge. In particular, when the breadth of the powder pattern is much larger than the cross-polarization (CP) excitation bandwidth, transfer efficiencies suffer and experimental times are greatly increased. Presented herein is a CP pulse sequence with an excitation bandwidth that is up to ten times greater than that available from a conventional spin-locked CP pulse sequence. The pulse sequence, broadband adiabatic inversion CP (BRAIN-CP), makes use of the broad, uniformly large frequency profiles of chirped inversion pulses, to provide these same characteristics to the polarization transfer process. A detailed theoretical analysis is given, providing insight into the polarization transfer process involved in BRAIN-CP. Experiments on spin-1/2 nuclei including (119)Sn, (199)Hg and (195)Pt nuclei are presented, and the large bandwidth improvements possible with BRAIN-CP are demonstrated. Furthermore, it is shown that BRAIN-CP can be combined with broadband frequency-swept versions of the Carr-Purcell-Meiboom-Gill experiment (for instance with WURST-CPMG, or WCPMG for brevity); the combined BRAIN-CP/WCPMG experiment then provides multiplicative signal enhancements of both CP and multiple-echo acquisition over a broad frequency region.
Collapse
Affiliation(s)
- Kristopher J. Harris
- Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Ontario, Canada
| | - Adonis Lupulescu
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Bryan E. G. Lucier
- Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Ontario, Canada
| | - Lucio Frydman
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
- Authors for correspondence: ,
| | - Robert W. Schurko
- Department of Chemistry, University of Windsor, 401 Sunset Avenue, Windsor, N9B 3P4, Ontario, Canada
- Authors for correspondence: ,
| |
Collapse
|
9
|
Bakhmutov VI. Strategies for solid-state NMR studies of materials: from diamagnetic to paramagnetic porous solids. Chem Rev 2010; 111:530-62. [PMID: 20843066 DOI: 10.1021/cr100144r] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Murakami M, Shimizu T, Tansho M, Takegoshi K. Improvement of 1H-2H cross polarization under magic-angle spinning by using amplitude/frequency modulation. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2009; 36:172-176. [PMID: 19954932 DOI: 10.1016/j.ssnmr.2009.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/14/2009] [Accepted: 10/29/2009] [Indexed: 05/28/2023]
Abstract
In 1H-2H cross polarization (CP) under magic-angle spinning (MAS), it has been pointed out that modulation of a H2 resonance frequency caused by MAS acts as adiabatic frequency sweep and efficient CP over the broad H2 powder pattern can be achieved. The adiabaticity, however, does not hold when the MAS frequency becomes faster, leading to insufficient CP enhancement. In this work, it is demonstrated that by applying amplitude/frequency modulation for H2 irradiation during CP, CP efficiency at faster MAS can be improved appreciably. By examining 1H-2H CP spectra taken at off-amplitude or off-resonance conditions, it is suggested that the improvement is ascribed to accumulation of CP signals from various parts of the broad H2 resonance, whose orientational dependence is time-dependent and is partially averaged under MAS.
Collapse
Affiliation(s)
- Miwa Murakami
- National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan.
| | | | | | | |
Collapse
|
11
|
Fukuchi M, Ramamoorthy A, Takegoshi K. Efficient cross-polarization using a composite 0 degrees pulse for NMR studies on static solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2009; 196:105-9. [PMID: 19022690 PMCID: PMC2737510 DOI: 10.1016/j.jmr.2008.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 10/09/2008] [Accepted: 10/11/2008] [Indexed: 05/05/2023]
Abstract
In most solid-state NMR experiments, cross-polarization is an essential step to detect low-gamma nuclei such as (13)C and (15)N. In this study, we present a new cross-polarization scheme using spin-locks composed of composite 0 degrees pulses in the RF channels of high-gamma and low-gamma nuclei to establish the Hartmann-Hahn match. The composite 0 degrees pulses with no net nutation-angle{(2pi)(X)-(2pi)(-X)-(2pi)(Y)-(2pi)(-Y) -}(n) applied simultaneously to both high-gamma (I) and low-gamma (S) nuclei create an effective heteronuclear dipolar Hamiltonian H(d)((0))=d/2(2I(Z)S(Z)+I(X)S(X)+I(Y)S(Y)), which is capable of transferring the Z-component of the I spin magnetization to the Z-component of the S spin magnetization. It also retains a homonuclear dipolar coupling Hamiltonian that enables the flip-flop transfer among abundant spins. While our experimental results indicate that the new pulse sequence, called composite zero cross-polarization (COMPOZER-CP) performs well on adamantane, it is expected to be more valuable to study semi-solids like liquid crystalline materials and model lipid membranes. Theoretical analysis of COMPOZER-CP is presented along with experimental results. Our experimental results demonstrate that COMPOZER-CP overcomes the RF field inhomogeneity and Hartmann-Hahn mismatch for static solids. Experimental results comparing the performance of COMPOZER-CP with that of the traditional constant-amplitude CP and rampCP sequences are also presented in this paper.
Collapse
Affiliation(s)
- Masashi Fukuchi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - K. Takegoshi
- Division of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Japan Science and Technology Agency, CREST, 5, Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan
| |
Collapse
|