1
|
Meng Y, Peplowski L, Wu T, Cheng Z, Han L, Qiao J, Cheng Z, Zhou Z. Multi-method analysis revealed the mechanism of substrate selectivity in NHase: A gatekeeper residue at the activity center. Int J Biol Macromol 2024; 279:135426. [PMID: 39251006 DOI: 10.1016/j.ijbiomac.2024.135426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Recognizing the critical need to elucidate the molecular determinants of this selectivity offers a pathway to engineer enzymes with broader and more versatile catalytic capabilities. Through integrated methods including phylogenetic analysis, molecular docking, and structural analysis, we identified a pivotal amino acid residue, αTrp116, linking the substrate binding pocket and the active site of a NHase from Pseudonocardia thermophila JCM 3095 (PtNHase). This residue acts as a crucial determinant of substrate specificity within the NHase enzyme. The mutant αW116R modified the substrate specificity of PtNHase, significantly enhancing its catalytic efficiency towards aromatic substrates. The catalytic activity for aromatic compounds such as 3-Cyanopyridine was 14-fold that of the wild-type, whereas its activity for aliphatic substrates diminished to one-sixth. MD simulations revealed that replacing αTrp116 with Arg allowed aromatic nitrile substrates to achieve more favorable conformations within the active site. Based on the mutant αW116R, we further constructed a combinatorial variant Pt-4, tailored for aromatic substrates, which exhibited an enzyme activity 50 times that of the wild-type. These results highlight the critical influence of amino acid residues in the enzyme's active site on substrate specificity and offer fresh perspectives and approaches for the evolution of enzymes.
Collapse
Affiliation(s)
- Yiwei Meng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
| | - Tong Wu
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jun Qiao
- Ningbo Institute of Marine Medicine, Peking University, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China.
| |
Collapse
|
2
|
Ma D, Cheng Z, Han L, Guo J, Peplowski L, Zhou Z. Structure-oriented engineering of nitrile hydratase: Reshaping of substrate access tunnel and binding pocket for efficient synthesis of cinnamamide. Int J Biol Macromol 2024; 254:127800. [PMID: 37918589 DOI: 10.1016/j.ijbiomac.2023.127800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Cinnamamide and its derivatives are the most common and important building blocks widely present in natural products. Currently, nitrile hydratase (NHase, EC 4.2.1.84) has been widely used in large-scale industrial production of nicotinamide and acrylamide, while its catalytic activity is extremely low or inactive for bulky nitrile substrates such as cinnamonitrile. Therefore, beneficial variant βF37P/L48P/F51N were obtained from PtNHase of Pseudonocardia thermophila JCM3095 by reshaping of substrate access tunnel and binding pocket, which exhibited 14.88-fold improved catalytic efficiency compared to the wild-type PtNHase. Structure analysis, molecular dynamics simulations and dynamical cross-correlation matrix (DCCM) analysis revealed that the introduced mutations enlarged the substrate access tunnel and binding pocket, enhanced overall anti-correlated movements of enzymes, which would promote product release during the dynamic process of catalysis. In a hydration process, the complete conversion of 5 mM cinnamonitrile was achieved by βF37P/L48P/F51N in a 50 mL reaction, with cinnamamide yield of almost 100 % and productivity of 0.736 g L-1 h-1. The study demonstrates the co-evolution of substrate access tunnel and binding pocket is an effective strategy, and provides a valuable reference for future research. Furthermore, NHases have huge potential for catalyzing bulky nitriles to form corresponding amides in large-scale industrial production.
Collapse
Affiliation(s)
- Dong Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland.
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China.
| |
Collapse
|
3
|
Zhang L, Zhao S, Chang C, Wang J, Yang C, Cheng Z. N-terminal loops at the tetramer interface of nitrile hydratase act as "hooks" determining resistance to high amide concentrations. Int J Biol Macromol 2023; 245:125531. [PMID: 37355073 DOI: 10.1016/j.ijbiomac.2023.125531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Nitrile hydratase (NHase) has been extensively utilized in industrial acrylamide production. However, the vulnerability to high concentrations of acrylamide limits its further application. Herein, we redesigned the N-terminal loop at the tetramer interface of a thermophilic NHase from Pseudonocardia thermophila JCM3095 (PtNHase), and its catalytic activity, resistance to high acrylamide concentrations, and thermostability were improved. Amino acid residues located in the N-terminal loop of the tetramer interface that are responsible for enhancing the resistance to high acrylamide concentrations were identified via static structural analysis and molecular dynamics simulations. A variant library was used to fine-tune the tetramer interface. Variant αL6T exhibited 3.5-fold greater resistance to 50% (v/v) acrylamide, whereas its activity was 1.2-fold higher than that of the wild-type (WT) enzyme, revealing no activity-stability trade-off. Compared to the use of Escherichia coli harboring the WT enzyme, the use of E. coli harboring αL6T increased the acrylamide concentration from 398.1 g/L to 500 g/L. Crystal structure-guided analysis of αL6T and molecular dynamics simulations revealed that increased enzyme surface hydration and the introduction of positive cross-correlation into the N-terminal loop of the tetramer interface caused the two loop regions to hook to each other, thus improving the resistance to high acrylamide concentrations.
Collapse
Affiliation(s)
- Leyi Zhang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shiyue Zhao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Chang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianan Wang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chen Yang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
"Toolbox" construction of an extremophilic nitrile hydratase from Streptomyces thermoautotrophicus for the promising industrial production of various amides. Int J Biol Macromol 2022; 221:1103-1111. [PMID: 36108746 DOI: 10.1016/j.ijbiomac.2022.09.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
Nitrile hydratase (NHase; EC 4.2.1.84) is widely used to synthesize the corresponding amides from nitriles, which is the most successful green biocatalyst. However, the limited acceptability of substrates and instability under harsh reaction conditions have hindered its widespread industrial application. Here, a gene encoding an extremophilic NHase from Streptomyces thermoautotrophicus (S.t NHase) was successfully overexpressed in Escherichia coli. The enzyme exhibited excellent thermostability, retaining >50 % of residual activity after heat treatment at 65 °C for 252 min. To further improve the catalytic performance of S.t NHase, semi-rational engineering of its substrate access tunnel was performed. A mutant βL48D showed a specific activity of 566.18 ± 18.86 U/mg towards 3-cyanopyridine, which was 7.7 times higher than its parent enzyme (73.80 ± 5.76 U/mg). Molecular dynamics simulation showed that the introduction of aspartic acid into βLeu48 resulted in a larger and more frequent opening of the substrate access tunnel entrance. On this basis, a "toolbox" containing various mutants on the substrate access tunnel was further established, whose catalytic activity towards various nitrile substrates was extensively improved, showing great potential for efficient synthesis of multiple high-value amides.
Collapse
|
5
|
Ma D, Cheng Z, Peplowski L, Han L, Xia Y, Hou X, Guo J, Yin D, Rao Y, Zhou Z. Insight into the broadened substrate scope of nitrile hydratase by static and dynamic structure analysis. Chem Sci 2022; 13:8417-8428. [PMID: 35919716 PMCID: PMC9297474 DOI: 10.1039/d2sc02319a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022] Open
Abstract
The narrow substrate scope limits the wide industrial application of enzymes. Here, we successfully broadened the substrate scope of a nitrile hydratase (NHase) through mutation of two tunnel entrance residues based on rational tunnel calculation. Two variants, with increased specific activity, especially toward bulky substrates, were obtained. Crystal structure analysis revealed that the mutations led to the expansion of the tunnel entrance, which might be conducive to substrate entry. More importantly, molecular dynamics simulations illustrated that the mutations introduced anti-correlated movements to the regions around the substrate tunnel and the active site, which would promote substrate access during the dynamic process of catalysis. Additionally, mutations on the corresponding tunnel entrance residues on other NHases also enhanced their activity toward bulky substrates. These results not only revealed that residues located at the enzyme surface were a key factor in enzyme catalytic performance, but also provided dynamic evidence for insight into enzyme substrate scope broadening.
Collapse
Affiliation(s)
- Dong Ma
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun Grudziadzka 5 87-100 Torun Poland
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Xiaodong Hou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Dejing Yin
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Yijian Rao
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University Wuxi Jiangsu 214122 China
- Jiangnan University (Rugao) Food Biotechnology Research Institute Rugao Jiangsu China
| |
Collapse
|
6
|
High-Level Expression of Nitrile Hydratase in Escherichia coli for 2-Amino-2,3-Dimethylbutyramide Synthesis. Processes (Basel) 2022. [DOI: 10.3390/pr10030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the synthesis of imidazolinone herbicides, 2-Amino-2,3-dimethylbutyramide (ADBA) is an important intermedium. In this study, the recombinant production of nitrile hydratase (NHase) in Escherichia coli for ADBA synthesis was explored. A local library containing recombinant NHases from various sources was screened using a colorimetric method. NHase from Pseudonocardia thermophila JCM3095 was selected, fused with a His-tag and one-step purified. The enzymatic properties of recombinant NHase were studied and indicated robust thermal stability and inhibition of cyanide ions due to substrate degradation. After systematic optimization of fermentation conditions, the OD600 (optical density at 600 nm), enzyme activity and specific activity of recombinant strain E. coli BL21(DE3)/pET-28a+NHase reached 19.4, 3.72 U/mL and 1.04 U/mg protein at 42 h, representing 5.86-, 26.6- and 4-fold increases, respectively. These results offered an efficient recombinant whole-cell biocatalyst for ADBA synthesis.
Collapse
|
7
|
Cheng Z, Jiang S, Zhou Z. Substrate access tunnel engineering for improving the catalytic activity of a thermophilic nitrile hydratase toward pyridine and pyrazine nitriles. Biochem Biophys Res Commun 2021; 575:8-13. [PMID: 34454178 DOI: 10.1016/j.bbrc.2021.08.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Nitrile hydratase (NHase) is able to bio-transform nitriles into amides. As nitrile hydration being an exothermic reaction, a NHase with high activity and stability is needed for amide production. However, the widespread use of NHase for amide bio-production is limited by an activity-stability trade-off. In this study, through the combination of substrate access tunnel calculation, residue conservative analysis and site-saturation mutagenesis, a residue located at the substrate access tunnel entrance of the thermophilic NHase from extremophile Caldalkalibacillus thermarum TA2. A1, βLeu48, was semi-rationally identified as a potential gating residue that directs the enzymatic activity toward various pyridine and pyrazine nitriles. The specific activity of the corresponding mutant βL48H towards 3-cyanopyridine, 2-cyanopyridine and cyanopyrazine were 2.4-fold, 2.8-fold and 3.1-fold higher than that of its parent enzyme, showing a great potential in the industrial production of high-value pyridine and pyrazine carboxamides. Further structural analysis demonstrated that the βHis48 could form a long-lasting hydrogen bond with αGlu166, which contributes to the expansion of the entrance of substrate access tunnel and accelerate substrate migration.
Collapse
Affiliation(s)
- Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shijin Jiang
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China; Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, 226500, China.
| |
Collapse
|
8
|
Effect and mechanism analysis of different linkers on efficient catalysis of subunit-fused nitrile hydratase. Int J Biol Macromol 2021; 181:444-451. [PMID: 33753198 DOI: 10.1016/j.ijbiomac.2021.03.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 11/21/2022]
Abstract
Protein fusion using a linker plays an important role for protein evolution. However, designing suitable linkers for protein evolution is yet challenging and under-explored. To further clarify the regular pattern of suitable type of linker for fusion proteins, one nitrile hydratase (NHase) was used as a target protein and subunit fusion strategy was carried out to improve its efficient catalysis. Subunit-fused variants with three different types of linkers were constructed and characterized. All variants exhibited higher stability than that of the wild type. The longer the linker was, the higher stability NHase showed, however, too long linker affected NHase activity and expression. Among the three types of linkers, the α-helical linker seemed more suitable for NHase than flexible or rigid linkers. Though it is not clear how the linkers affecting the activity, structure analysis indicated that the stability improvement is dependent on the additional salt bridge, H-bond, and the subunit interface area increasing due to the linker insertion, among which the additional salt bridge and interface area were more important factors. The results described here may be useful for redesigning other enzymes through subunit fusion.
Collapse
|
9
|
Mo P, Zhao Y, Liu J, Xu Z, Gao J. Pseudonocardia broussonetiae sp. nov., an endophytic actinomycete isolated from the roots of Broussonetia papyrifera. Int J Syst Evol Microbiol 2021; 71. [PMID: 33528351 DOI: 10.1099/ijsem.0.004680] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel endophytic actinomycete, designated strain Gen 01T, was isolated from the roots of Broussonetia papyrifera and characterized by using a polyphasic approach. The predominant cellular fatty acids were iso-C16 : 0, summed feature 3, iso H-C16 : 1, C16 : 0 and iso-C14 : 0. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannosides, phospholipids of unknown structure containing glucosamine inositol, phosphatidylinositol and unidentified phospholipids. The major menaquinone was MK-8 (H4). The DNA G+C content of the genome sequence, consisting of 7 177 725 bp, was 74.5 mol%. Phylogenetic analysis of the full-length 16S rRNA gene sequences showed that strain Gen 01T belongs to the genus Pseudonocardia with the highest sequence similarity to Pseudonocardia petroleophila CGMCC 4.1532T (98.9 %) and lower than 98.7 % similarity to other species of the genus Pseudonocardia with validly published names. The average nucleotide identity and digital DNA-DNAhybridization values between strain Gen 01T and P. petroleophila CGMCC 4.1532T were 84.6 and 30.9 %, respectively. Furthermore, the morphological, physiological and biochemical characteristics were sufficient to categorize strain Gen 01T as being distinct from P. petroleophila CGMCC 4.1532T. Consequently, based on phenotypic and genotypic characteristics, strain Gen 01T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia broussonetiae sp. nov. is proposed. The type strain is Gen 01T (=CICC 24820T=JCM 33840T).
Collapse
Affiliation(s)
- Ping Mo
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha 410004 Hunan, PR China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha 410004 Hunan, PR China
| | - Jun Liu
- College of Forestry, Northwest A & F University, Yangling 712100 Shaanxi, PR China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha 410004 Hunan, PR China
| | - Zhenggang Xu
- College of Forestry, Northwest A & F University, Yangling 712100 Shaanxi, PR China
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha 410004 Hunan, PR China
| | - Jian Gao
- School of Life Science, Hunan University of Science and Technology, Xiangtan 411201 Hunan, PR China
| |
Collapse
|
10
|
Cheng Z, Lan Y, Guo J, Ma D, Jiang S, Lai Q, Zhou Z, Peplowski L. Computational Design of Nitrile Hydratase from Pseudonocardia thermophila JCM3095 for Improved Thermostability. Molecules 2020; 25:molecules25204806. [PMID: 33086715 PMCID: PMC7587978 DOI: 10.3390/molecules25204806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022] Open
Abstract
High thermostability and catalytic activity are key properties for nitrile hydratase (NHase, EC 4.2.1.84) as a well-industrialized catalyst. In this study, rational design was applied to tailor the thermostability of NHase from Pseudonocardia thermophila JCM3095 (PtNHase) by combining FireProt server prediction and molecular dynamics (MD) simulation. Site-directed mutagenesis of non-catalytic residues provided by the rational design was subsequentially performed. The positive multiple-point mutant, namely, M10 (αI5P/αT18Y/αQ31L/αD92H/βA20P/βP38L/βF118W/βS130Y/βC189N/βC218V), was obtained and further analyzed. The Melting temperature (Tm) of the M10 mutant showed an increase by 3.2 °C and a substantial increase in residual activity of the enzyme at elevated temperatures was also observed. Moreover, the M10 mutant also showed a 2.1-fold increase in catalytic activity compared with the wild-type PtNHase. Molecular docking and MD simulations demonstrated better substrate affinity and improved thermostability for the mutant.
Collapse
Affiliation(s)
- Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.C.); (Y.L.); (J.G.); (D.M.); (S.J.); (Q.L.)
| | - Yao Lan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.C.); (Y.L.); (J.G.); (D.M.); (S.J.); (Q.L.)
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.C.); (Y.L.); (J.G.); (D.M.); (S.J.); (Q.L.)
| | - Dong Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.C.); (Y.L.); (J.G.); (D.M.); (S.J.); (Q.L.)
| | - Shijin Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.C.); (Y.L.); (J.G.); (D.M.); (S.J.); (Q.L.)
| | - Qianpeng Lai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.C.); (Y.L.); (J.G.); (D.M.); (S.J.); (Q.L.)
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; (Z.C.); (Y.L.); (J.G.); (D.M.); (S.J.); (Q.L.)
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao 226500, China
- Correspondence: (Z.Z.); (L.P.)
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziadzka 5, 87-100 Torun, Poland
- Correspondence: (Z.Z.); (L.P.)
| |
Collapse
|
11
|
Cheng Z, Xia Y, Zhou Z. Recent Advances and Promises in Nitrile Hydratase: From Mechanism to Industrial Applications. Front Bioeng Biotechnol 2020; 8:352. [PMID: 32391348 PMCID: PMC7193024 DOI: 10.3389/fbioe.2020.00352] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Nitrile hydratase (NHase, EC 4.2.1.84) is one type of metalloenzyme participating in the biotransformation of nitriles into amides. Given its catalytic specificity in amide production and eco-friendliness, NHase has overwhelmed its chemical counterpart during the past few decades. However, unclear catalytic mechanism, low thermostablity, and narrow substrate specificity limit the further application of NHase. During the past few years, numerous studies on the theoretical and industrial aspects of NHase have advanced the development of this green catalyst. This review critically focuses on NHase research from recent years, including the natural distribution, gene types, posttranslational modifications, expression, proposed catalytic mechanism, biochemical properties, and potential applications of NHase. The developments of NHase described here are not only useful for further application of NHase, but also beneficial for the development of the fields of biocatalysis and biotransformation.
Collapse
Affiliation(s)
| | | | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Mashweu AR, Chhiba-Govindjee VP, Bode ML, Brady D. Substrate Profiling of the Cobalt Nitrile Hydratase from Rhodococcus rhodochrous ATCC BAA 870. Molecules 2020; 25:molecules25010238. [PMID: 31935987 PMCID: PMC6983157 DOI: 10.3390/molecules25010238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 02/04/2023] Open
Abstract
The aromatic substrate profile of the cobalt nitrile hydratase from Rhodococcus rhodochrous ATCC BAA 870 was evaluated against a wide range of nitrile containing compounds (>60). To determine the substrate limits of this enzyme, compounds ranging in size from small (90 Da) to large (325 Da) were evaluated. Larger compounds included those with a bi-aryl axis, prepared by the Suzuki coupling reaction, Morita-Baylis-Hillman adducts, heteroatom-linked diarylpyridines prepared by Buchwald-Hartwig cross-coupling reactions and imidazo[1,2-a]pyridines prepared by the Groebke-Blackburn-Bienaymé multicomponent reaction. The enzyme active site was moderately accommodating, accepting almost all of the small aromatic nitriles, the diarylpyridines and most of the bi-aryl compounds and Morita-Baylis-Hillman products but not the Groebke-Blackburn-Bienaymé products. Nitrile conversion was influenced by steric hindrance around the cyano group, the presence of electron donating groups (e.g., methoxy) on the aromatic ring, and the overall size of the compound.
Collapse
Affiliation(s)
- Adelaide R. Mashweu
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (A.R.M.); (V.P.C.-G.)
| | - Varsha P. Chhiba-Govindjee
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (A.R.M.); (V.P.C.-G.)
- CSIR Chemical Production Cluster, PO Box 395, Pretoria 0001, South Africa
| | - Moira L. Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (A.R.M.); (V.P.C.-G.)
- Correspondence: (M.L.B.); (D.B.); Tel.: +27-117176745 (D.B.)
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (A.R.M.); (V.P.C.-G.)
- Correspondence: (M.L.B.); (D.B.); Tel.: +27-117176745 (D.B.)
| |
Collapse
|
13
|
Escalante DE, Aksan A. Role of Water Hydrogen Bonding on Transport of Small Molecules inside Hydrophobic Channels. J Phys Chem B 2019; 123:6673-6685. [PMID: 31310534 DOI: 10.1021/acs.jpcb.9b03060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We conducted a systematic analysis of water networking inside smooth hyperboloid hydrophobic structures (cylindrical, barrel, and hourglass shapes) to elucidate the role of water hydrogen bonding on the transport of small hydrophobic molecules (ligands). Through a series of molecular dynamics simulations, we established that a hydrogen-bonded network forming along the centerline resulted in a water exclusion zone adjacent to the walls. The size of the exclusion zone is a function of the geometry and the nonbonded interaction strength, defining the effective hydrophobicity of the structure. Exclusion of water molecules from this zone results in lower apparent viscosity, leading to acceleration of ligand transport up to 7 times faster than that measured in the bulk. Transport of ligands into and out of the hydrophobic structures was shown to be controlled by a single water molecule that capped the narrow regions in the structure. This mechanism provides physical insights into the behavior and role of water in the bottleneck regions of hydrophobic enzyme channels. These findings were then used in a sister publication [ Escalante , D. E. , Comput. Struct. Biotechnol. J. 2019 17 757 760 ] to develop a model that can accurately predict the transport of ligands along nanochannels of broad-substrate specificity enzymes.
Collapse
Affiliation(s)
- Diego E Escalante
- Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Alptekin Aksan
- Department of Mechanical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
14
|
Hildebrand N, Wei G, Köppen S, Colombi Ciacchi L. Simulated and experimental force spectroscopy of lysozyme on silica. Phys Chem Chem Phys 2018; 20:19595-19605. [PMID: 30009290 DOI: 10.1039/c8cp03747g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The force spectra of proteins detaching from oxide surfaces measured by atomic force microscopy (AFM) often present complex patterns of peaks, which are difficult to correlate with individual bond-breaking events at the atomic scale. In this work we rationalize experimental AFM force spectra of hen-egg-white lysozyme detaching from silica by means of all-atom steered molecular dynamics (SMD) simulations. In particular, we demonstrate that the native tertiary structure of lysozyme is preserved if, and only if, its four intramolecular disulfide bridges are intact. Otherwise, the protein pulled off the surface undergoes severe unfolding, which is well captured by SMD simulations in explicit solvent. Implicit solvent simulations, on the contrary, wrongly predict protein unfolding even in the presence of S-S bridges, due to the lack of additional structural stabilization provided by the water's hydrogen-bond network within and surrounding the protein. On the basis of our combined experimental and theoretical findings, we infer that the rugged force spectra characteristic of lysozyme/silica interfaces are not due to the successive breaking of internal disulfide bonds leading to partial unfolding events. Rather, they reflect the detachment of several molecules bound to the same AFM tip, each anchored to the surface via multiple hydrogen and ionic bonds.
Collapse
Affiliation(s)
- Nils Hildebrand
- Hybrid Materials Interfaces Group, Faculty Production Engineering, Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, 28359 Bremen, Germany.
| | | | | | | |
Collapse
|
15
|
Pei X, Wang J, Wu Y, Zhen X, Tang M, Wang Q, Wang A. Evidence for the participation of an extra α-helix at β-subunit surface in the thermal stability of Co-type nitrile hydratase. Appl Microbiol Biotechnol 2018; 102:7891-7900. [DOI: 10.1007/s00253-018-9191-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/23/2022]
|
16
|
Cheng Z, Cui W, Xia Y, Peplowski L, Kobayashi M, Zhou Z. Modulation of Nitrile Hydratase Regioselectivity towards Dinitriles by Tailoring the Substrate Binding Pocket Residues. ChemCatChem 2017. [DOI: 10.1002/cctc.201701170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhongyi Cheng
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Wenjing Cui
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Yuanyuan Xia
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| | - Lukasz Peplowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics; Nicolaus Copernicus University; Grudziadzka 5 87-100 Torun Poland
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and the Graduate School of Life, and Environment Sciences; The University of Tsukuba; Ibaraki 305-8572 Japan
| | - Zhemin Zhou
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi 214122 P.R. China
| |
Collapse
|
17
|
Cheng Z, Peplowski L, Cui W, Xia Y, Liu Z, Zhang J, Kobayashi M, Zhou Z. Identification of key residues modulating the stereoselectivity of nitrile hydratase toward rac-mandelonitrile by semi-rational engineering. Biotechnol Bioeng 2017; 115:524-535. [DOI: 10.1002/bit.26484] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi China
| | - Lukasz Peplowski
- Faculty of Physics; Institute of Physics; Astronomy and Informatics; Nicolaus. Copernicus University; Grudziadzka 5 Torun Poland
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi China
| | - Jialei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi China
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and the Graduate School of Life and Environmental Sciences; The University of Tsukuba; Tsukuba Ibaraki Japan
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi China
| |
Collapse
|
18
|
Rydzewski J, Nowak W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys Life Rev 2017; 22-23:58-74. [PMID: 28410930 DOI: 10.1016/j.plrev.2017.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
19
|
Using microchannels to visually investigate the formation and dissolution of acrylonitrile droplets in a bio-hydration system. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Rydzewski J, Nowak W. Memetic algorithms for ligand expulsion from protein cavities. J Chem Phys 2016; 143:124101. [PMID: 26428990 DOI: 10.1063/1.4931181] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ligand diffusion through a protein interior is a fundamental process governing biological signaling and enzymatic catalysis. A complex topology of channels in proteins leads often to difficulties in modeling ligand escape pathways by classical molecular dynamics simulations. In this paper, two novel memetic methods for searching the exit paths and cavity space exploration are proposed: Memory Enhanced Random Acceleration (MERA) Molecular Dynamics (MD) and Immune Algorithm (IA). In MERA, a pheromone concept is introduced to optimize an expulsion force. In IA, hybrid learning protocols are exploited to predict ligand exit paths. They are tested on three protein channels with increasing complexity: M2 muscarinic G-protein-coupled receptor, enzyme nitrile hydratase, and heme-protein cytochrome P450cam. In these cases, the memetic methods outperform simulated annealing and random acceleration molecular dynamics. The proposed algorithms are general and appropriate in all problems where an accelerated transport of an object through a network of channels is studied.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| |
Collapse
|
21
|
Cheng Z, Cui W, Liu Z, Zhou L, Wang M, Kobayashi M, Zhou Z. A switch in a substrate tunnel for directing regioselectivity of nitrile hydratases towards α,ω-dinitriles. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01997d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The β37 residue of nitrile hydratase (NHase) from Pseudomonas putida and NHase from Comamonas testosteroni played a critical role in directing enzyme regioselectivity.
Collapse
Affiliation(s)
- Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| | - Min Wang
- College of Biotechnology
- Tianjin University of Science & Technology
- Tianjin 300457
- PR China
| | - Michihiko Kobayashi
- Institute of Applied Biochemistry and the Graduate School of Life and Environmental Sciences
- The University of Tsukuba
- Tsukuba
- Japan
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
22
|
Molecular Modeling and Its Applications in Protein Engineering. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
23
|
Li J, Liu J, Chen J, Wang Y, Luo G, Yu H. Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor. BIORESOURCE TECHNOLOGY 2015; 187:198-204. [PMID: 25846190 DOI: 10.1016/j.biortech.2015.03.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
In this work, multiple reuses of Rhodococcus ruber TH3 free cells for the hydration of acrylonitrile to produce acrylamide in a membrane dispersion microreactor were carried out. Through using a centrifuge, the reactions reached 39.9, 39.5, 38.6 and 38.0wt% of the final acrylamide product concentration respectively within 35min in a four cycle reuse of free cells. In contrast, using a stirring tank, free cells could only be used once with the same addition speed of acrylonitrile with a microreactor. Through observing the dissolution behavior of acrylonitrile microdroplets in a free cell solution using a coaxial microfluidic device and microscope, it was found that the acrylonitrile microdroplets with a diameter of 75μm were rarely observed within a length of 2cm channel within 10s, which illustrated that the microreactor can intensify the reaction rate to reduce the inhibition of acrylonitrile and acrylamide.
Collapse
Affiliation(s)
- Jiahui Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Junqi Liu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Jie Chen
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yujun Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China.
| | - Guangsheng Luo
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Huimin Yu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
24
|
Kubiak-Ossowska K, Mulheran PA, Nowak W. Fibronectin Module FNIII9 Adsorption at Contrasting Solid Model Surfaces Studied by Atomistic Molecular Dynamics. J Phys Chem B 2014; 118:9900-8. [DOI: 10.1021/jp5020077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Karina Kubiak-Ossowska
- Department
of Chemical and Process Engineering, University of Strathclyde, James
Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziadzka 5/7, 87-100 Torun, Poland
| | - Paul A. Mulheran
- Department
of Chemical and Process Engineering, University of Strathclyde, James
Weir Building, 75 Montrose Street, Glasgow G1 1XJ, United Kingdom
| | - Wieslaw Nowak
- Institute
of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudziadzka 5/7, 87-100 Torun, Poland
| |
Collapse
|
25
|
Improvement of stability of nitrile hydratase via protein fragment swapping. Biochem Biophys Res Commun 2014; 450:401-8. [DOI: 10.1016/j.bbrc.2014.05.127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 11/21/2022]
|
26
|
Housaindokht MR, Monhemi H, Hosseini HE, Sadeghi Googheri MS, Najafabadi RI, Ashraf N, Gholizadeh M. It is explored that ionic liquids can be suitable solvents for nitrile hydratase catalyzed reactions: A gift of the molecular modeling for the industry. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Kubiak-Ossowska K, Mulheran PA. Protein diffusion and long-term adsorption states at charged solid surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15577-15585. [PMID: 23062108 DOI: 10.1021/la303323r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The diffusion pathways of lysozyme adsorbed to a model charged ionic surface are studied using fully atomistic steered molecular dynamics simulation. The simulations start from existing protein adsorption trajectories, where it has been found that one particular residue, Arg128 at the N,C-terminal face, plays a crucial role in anchoring the lysozyme to the surface [Langmuir 2010 , 26 , 15954 - 15965]. We first investigate the desorption pathway for the protein by pulling the Arg128 side chain away from the surface in the normal direction, and its subsequent readsorption, before studying diffusion pathways by pulling the Arg128 side chain parallel to the surface. We find that the orientation of this side chain plays a decisive role in the diffusion process. Initially, it is oriented normal to the surface, aligning in the electrostatic field of the surface during the adsorption process, but after resorption it lies parallel to the surface, being unable to return to its original orientation due to geometric constraints arising from structured water layers at the surface. Diffusion from this alternative adsorption state has a lower energy barrier of ∼0.9 eV, associated with breaking hydrogen bonds along the pathway, in reasonable agreement with the barrier inferred from previous experimental observation of lysozyme surface clustering. These results show the importance of studying protein diffusion alongside adsorption to gain full insight into the formation of protein clusters and films, essential steps in the future development of functionalized surfaces.
Collapse
Affiliation(s)
- Karina Kubiak-Ossowska
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| | | |
Collapse
|
28
|
Pepłowski L, Sikora M, Nowak W, Cieplak M. Molecular jamming--the cystine slipknot mechanical clamp in all-atom simulations. J Chem Phys 2011; 134:085102. [PMID: 21361557 DOI: 10.1063/1.3553801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A recent survey of 17 134 proteins has identified a new class of proteins which are expected to yield stretching induced force peaks in the range of 1 nN. Such high force peaks should be due to forcing of a slip-loop through a cystine ring, i.e., by generating a cystine slipknot. The survey has been performed in a simple coarse grained model. Here, we perform all-atom steered molecular dynamics simulations on 15 cystine knot proteins and determine their resistance to stretching. In agreement with previous studies within a coarse grained structure based model, the level of resistance is found to be substantially higher than in proteins in which the mechanical clamp operates through shear. The large stretching forces arise through formation of the cystine slipknot mechanical clamp and the resulting steric jamming. We elucidate the workings of such a clamp in an atomic detail. We also study the behavior of five top strength proteins with the shear-based mechanostability in which no jamming is involved. We show that in the atomic model, the jamming state is relieved by moving one amino acid at a time and there is a choice in the selection of the amino acid that advances the first. In contrast, the coarse grained model also allows for a simultaneous passage of two amino acids.
Collapse
Affiliation(s)
- Lukasz Pepłowski
- Institute of Physics, Nicolaus Copernicus University, Torun, Poland
| | | | | | | |
Collapse
|
29
|
Nitrile hydratases (NHases): At the interface of academia and industry. Biotechnol Adv 2010; 28:725-41. [DOI: 10.1016/j.biotechadv.2010.05.020] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 11/19/2022]
|