1
|
Somogyi W, Yurchenko SN, Yachmenev A. Calculation of electric quadrupole linestrengths for diatomic molecules: Application to the H 2, CO, HF, and O 2 molecules. J Chem Phys 2021; 155:214303. [PMID: 34879671 DOI: 10.1063/5.0063256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a unified variational treatment of the electric quadrupole (E2) matrix elements, Einstein coefficients, and linestrengths for general open-shell diatomic molecules in the general purpose diatomic code Duo. Transformation relations between the Cartesian representation (typically used in electronic structure calculations) to the tensorial representation (required for spectroscopic applications) of the electric quadrupole moment components are derived. The implementation has been validated against accurate theoretical calculations and experimental measurements of quadrupole intensities of 1H2 available in the literature. We also present accurate electronic structure calculations of the electric quadrupole moment functions for the X1Σ+ electronic states of CO and HF, as well as for the a1Δg-b1Σg + quadrupole transition moment of O2 with the MRCI level of theory. Accurate infrared E2 line lists for 12C16O and 1H19F are provided. A demonstration of spectroscopic applications is presented by simulating E2 spectra for 12C16O, H19F, and 16O2 (Noxon a1Δg-b1Σg + band).
Collapse
Affiliation(s)
- W Somogyi
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - S N Yurchenko
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - A Yachmenev
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Wu T, Földes T, Lee LT, Wagner DN, Jiang J, Tasoglou A, Boor BE, Blatchley ER. Real-Time Measurements of Gas-Phase Trichloramine (NCl 3) in an Indoor Aquatic Center. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8097-8107. [PMID: 34033479 DOI: 10.1021/acs.est.0c07413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
NCl3 is formed as a disinfection byproduct in chlorinated swimming pools and can partition between the liquid and gas phases. Exposure to gas-phase NCl3 has been linked to asthma and can irritate the eyes and respiratory airways, thereby affecting the health and athletic performance of swimmers. This study involved an investigation of the spatiotemporal dynamics of gas-phase NCl3 in an aquatic center during a collegiate swim meet. Real-time (up to 1 Hz) measurements of gas-phase NCl3 were made via a novel on-line derivatization cavity ring-down spectrometer and a proton transfer reaction time-of-flight mass spectrometer. Significant temporal variations in gas-phase NCl3 and CO2 concentrations were observed across varying time scales, from seconds to hours. Gas-phase NCl3 concentrations increased with the number of active swimmers due to swimming-enhanced liquid-to-gas transfer of NCl3, with peak concentrations between 116 and 226 ppb. Strong correlations between concentrations of gas-phase NCl3 with concentrations of CO2 and water (relative humidity) were found and attributed to similar features in their physical transport processes in pool air. A vertical gradient in gas-phase NCl3 concentrations was periodically observed above the water surface, demonstrating that swimmers can be exposed to elevated levels of NCl3 beyond those measured in the bulk air.
Collapse
Affiliation(s)
- Tianren Wu
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tomas Földes
- Aquality Technologies Srl, 1050 Brussels, Belgium
- Spectroscopy, Quantum Chemistry, and Atmospheric Remote Sensing, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Lester T Lee
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Danielle N Wagner
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinglin Jiang
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Brandon E Boor
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Ray W. Herrick Laboratories, Center for High Performance Buildings, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ernest R Blatchley
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Division of Environmental and Ecological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Al‐Nu'airat J, Oluwoye I, Zeinali N, Altarawneh M, Dlugogorski BZ. Review of Chemical Reactivity of Singlet Oxygen with Organic Fuels and Contaminants. CHEM REC 2020; 21:315-342. [DOI: 10.1002/tcr.202000143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Jomana Al‐Nu'airat
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Ibukun Oluwoye
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Nassim Zeinali
- Murdoch University Discipline of Chemistry and Physics, College of Science, Health, Engineering and Education 90 South Street Murdoch WA 6150 Australia
| | - Mohammednoor Altarawneh
- United Arab Emirates University Chemical and Petroleum Engineering Department Sheikh Khalifa bin Zayed St Al-Ain 15551 United Arab Emirates
| | - Bogdan Z. Dlugogorski
- Charles Darwin University Energy and Resources Institute, Ellengowan Drive Darwin NT 0909 Australia
| |
Collapse
|
4
|
Ahmad R, Ahsan H. Singlet oxygen species and systemic lupus erythematosus: a brief review. J Immunoassay Immunochem 2019; 40:343-349. [DOI: 10.1080/15321819.2019.1616555] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rizwan Ahmad
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Herman M, Földes T, Didriche K, Lauzin C, Vanfleteren T. Overtone spectroscopy of molecular complexes containing small polyatomic molecules. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1171039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Földes T. Note: A very simple circuit for piezo actuator pseudo-tracking for continuous-wave cavity ring-down spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:016102. [PMID: 23387708 DOI: 10.1063/1.4774044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A very simple circuit for pseudo-tracking of the piezo actuator for continuous-wave cavity ring-down spectroscopy (cw-CRDS) is presented. The circuit is based on an ordinary positive-edge trigger D-type flip flop integrated circuit, has a low parts count, and can be easily assembled using only off the shelf components. The circuit can be straightforwardly incorporated into most cw-CRDS setups and, thanks to the increased ring-down event rate, higher sensitivity or lower data acquisition time can be achieved.
Collapse
Affiliation(s)
- T Földes
- Laboratoire de Chimie quantique et Photophysique, Université libre de Bruxelles, Bruxelles, Belgium.
| |
Collapse
|
7
|
Yu S, Miller CE, Drouin BJ, Müller HSP. High resolution spectral analysis of oxygen. I. Isotopically invariant Dunham fit for the X3Σg−, a1Δg, b1Σg+ states. J Chem Phys 2012; 137:024304. [DOI: 10.1063/1.4719170] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
8
|
Domysławska J, Wójtewicz S, Lisak D, Cygan A, Ozimek F, Stec K, Radzewicz C, Trawiński RS, Ciuryło R. Cavity ring-down spectroscopy of the oxygen B-band with absolute frequency reference to the optical frequency comb. J Chem Phys 2012; 136:024201. [DOI: 10.1063/1.3675903] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|