Folpini G, Siebert T, Woerner M, Abel S, Laage D, Elsaesser T. Water Librations in the Hydration Shell of Phospholipids.
J Phys Chem Lett 2017;
8:4492-4497. [PMID:
28858510 DOI:
10.1021/acs.jpclett.7b01942]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The hydrophilic phosphate moiety in the headgroup of phospholipids forms strong hydrogen bonds with water molecules in the first hydration layer. Time-domain terahertz spectroscopy in a range from 100 to 1000 cm-1 reveals the influence of such interactions on rotations of water molecules. We determine librational absorption spectra of water nanopools in phospholipid reverse micelles for a range from w0 = 2 to 16 waters per phospholipid molecule. A pronounced absorption feature with maximum at 830 cm-1 is superimposed on a broad absorption band between 300 and 1000 cm-1. Molecular dynamics simulations of water in the reverse micelles suggest that the feature at 830 cm-1 arises from water molecules forming one or two strong hydrogen bonds with phosphate groups, while the broad component comes from bulk-like environments. This behavior is markedly different from water interacting with less polar surfaces.
Collapse