1
|
Charette BJ, King SR, Chen J, Holm AR, Malme JT, Cook RD, Schaller RD, Jackson NE, Olshansky L. Excited State Dynamics of a Conformationally Fluxional Copper Coordination Complex. J Phys Chem A 2023; 127:7747-7755. [PMID: 37672011 DOI: 10.1021/acs.jpca.3c04269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The conversion of solar energy into chemical fuel represents a capstone goal of the 21st century and has the potential to supply terawatts of power in a globally distributed manner. However, the disparate time scales of photodriven charge separation (∼fs) and steps in chemical reactions (∼μs) represent an inherent bottleneck in solar-to-fuels technology. To address this discrepancy, we are developing earth-abundant coordination complexes that undergo light-induced conformational rearrangements such that charge separation (CS) is hastened, while charge recombination (CR) is slowed. To these ends, we report the preparation and characterization of a new series of conformationally fluxional copper coordination complexes that contain a twisted intramolecular charge transfer (TICT) fluorophore as part of their ligand scaffold. Structural and spectroscopic characterization of the Cu(I) and Cu(II) complexes formed with these ligands in their ground states establish oxidation state-dependent conformational dynamicity, while time-resolved emission and transient absorption spectroscopies define the photophysical parameters of photo-induced excited states. Building on initial reports with a related set of molecules, the improved ligand design presented here greatly simplifies the observed photophysics, effectively shutting down unwanted ligand-centered excited states previously observed. Time-dependent density functional theory (TDDFT) analyses reveal an unusual metal-to-TICT electronic transition only reported once before, and though the formation of a CS state is not observed directly through experiments, TDDFT geometry optimizations in the excited states support the formation of transient Cu(II) CS species, lending credence to the potential success of our approach. These studies establish a clear model for the excited state dynamics at play in proof-of-concept systems and clarify key design parameters for future optimizations toward achieving long-lived CS via photoinduced conformational gating.
Collapse
Affiliation(s)
- Bronte J Charette
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Shelby R King
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Jiaqi Chen
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Annika R Holm
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Justin T Malme
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Robert D Cook
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicholas E Jackson
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Lisa Olshansky
- University of Illinois, Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Feng XH, Yu ZC, Zhang W, Redshaw C, Prior TJ, Meng TH, Li CR, Tao Z, Xiao X. A study of the inclusion complex formed between cucurcubit[7]uril and 1-[4-(dimethylamino)phenyl]-ethanone. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Griffin PJ, Charette BJ, Burke JH, Vura-Weis J, Schaller RD, Gosztola DJ, Olshansky L. Toward Improved Charge Separation through Conformational Control in Copper Coordination Complexes. J Am Chem Soc 2022; 144:12116-12126. [PMID: 35762527 DOI: 10.1021/jacs.2c02580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The continued development of solar energy as a renewable resource necessitates new approaches to sustaining photodriven charge separation (CS). We present a bioinspired approach in which photoinduced conformational rearrangements at a ligand are translated into changes in coordination geometry and environment about a bound metal ion. Taking advantage of the differential coordination properties of CuI and CuII, these dynamics aim to facilitate intramolecular electron transfer (ET) from CuI to the ligand to create a CS state. The synthesis and photophysical characterization of CuCl(dpaaR) (dpaa = dipicolylaminoacetophenone, with R = H and OMe) are presented. These ligands incorporate a fluorophore that gives rise to a twisted intramolecular charge transfer (TICT) excited state. Excited-state ligand twisting provides a tetragonal coordination geometry capable of capturing CuII when an internal ortho-OMe binding site is present. NMR, IR, electron paramagnetic resonance (EPR), and optical spectroscopies, X-ray diffraction, and electrochemical methods establish the ground-state properties of these CuI and CuII complexes. The photophysical dynamics of the CuI complexes are explored by time-resolved photoluminescence and optical transient absorption spectroscopies. Relative to control complexes lacking a TICT-active ligand, the lifetimes of CS states are enhanced ∼1000-fold. Further, the presence of the ortho-OMe substituent greatly enhances the lifetime of the TICT* state and biases the coordination environment toward CuII. The presence of CuI decreases photoinduced degradation from 14 to <2% but does not result in significant quenching via ET. Factors affecting CS in these systems are discussed, laying the groundwork for our strategy toward solar energy conversion.
Collapse
Affiliation(s)
- Paul J Griffin
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Bronte J Charette
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - John H Burke
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lisa Olshansky
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Chan CTL, Ma C, Chan RCT, Ou HM, Xie HX, Wong AKW, Wang ML, Kwok WM. A long lasting sunscreen controversy of 4-aminobenzoic acid and 4-dimethylaminobenzaldehyde derivatives resolved by ultrafast spectroscopy combined with density functional theoretical study. Phys Chem Chem Phys 2020; 22:8006-8020. [PMID: 32239002 DOI: 10.1039/c9cp07014a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
4-Aminobenzoic acid (PABA) is one of the earliest patented and most commonly used sunscreen components. There is however a long-lasting controversy on its photo-protective efficacy owing to the lack of information on its protolytic equilibrium and photo-dynamics after absorption of ultraviolet radiation in physiologically relevant aqueous solution. The excitation dynamics in water also remains largely unknown for analogs of PABA such as 4-dimethylaminoacetophenone (DMAAP) and 4-dimethylaminobenzaldehyde (DMABA) which are recognized as prototypes for photo-induced twisted intramolecular charge transfer (TICT). Herein we report a combined application of femtosecond broadband time-resolved fluorescence and transient absorption coupled with density functional theoretical study for PABA, DMAAP, and DMABA under several solvent conditions with representative properties in terms of the pH, polarity and hydrogen bonding capacity. The results we gained demonstrate that, in a neutral aqueous solution, PABA taking the deprotonated anion form in the ground state undergoes rapid protonation after excitation, producing excited state species in the neutral form that may shift effectively by intersystem crossing (ISC) to the long-lasting triplet state capable of damaging nucleic acids. This provides evidence at the molecular level for the detrimental effect of PABA if used as a sunscreen ingredient. In contrast, our investigation on DMAAP and DMABA unveils an unusual solvent controlled deactivation dynamics rendered by the participation of the carbonyl oxygen associated nOπ* state featuring energy and structure strongly responsive to solvent properties. In particular, these molecules in water exhibit solute-solvent hydrogen bonding at the sites of the carbonyl oxygen and the amino nitrogen which is, respectively, weakened and strengthened after the excitation, leading to state reversal and formation of a nOπ* state with a peculiar non-planar structure. This quenches strongly the excitation, eliminates the TICT, suppresses the ISC and opens up the otherwise inaccessible internal conversion (IC) to account for ∼80% of the entire deactivation. The IC, observed to proceed at a rate of ∼2.5 ps, allows the effective recovery of the ground state, providing substantial protection against ultraviolet irradiation. Moreover, the revelation of highly solvent sensitive fluorescence emission from DMABA and DMAAP implies the potential application of these molecules as the functional element in the design of sensory materials for probing the polarity and hydrogen bonding character of the surrounding environment.
Collapse
Affiliation(s)
- Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Ruth Chau-Ting Chan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Hui-Min Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Han-Xin Xie
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| | - Ming-Liang Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
5
|
Salehi M, Heidari Z, Omidyan R. Photophysics of Protonated and Microhydrated 2-Aminobenzaldehyde: Theoretical Insights into Photoswitchability of Protonated Systems. J Phys Chem A 2018; 122:8849-8857. [PMID: 30365896 DOI: 10.1021/acs.jpca.8b09930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The photoswitchability of a protonated aromatic compound (2-aminobenzaldehyde, 2ABZH+) in its individual and microhydrated states has been addressed based on the RI-MP2/RI-CC2 theoretical methods. Our calculated results give insight into the ultrafast nonradiative deactivation mechanism of the 2ABZH+, driven by a conical intersection between the S1/ S0 potential energy surfaces. Also, it has been predicted that protonation accompanies a significant blue shift effect on the first 1ππ* excited state of 2ABZ by 0.87 eV (at least 50 nm).
Collapse
Affiliation(s)
- Mohammad Salehi
- Department of Chemistry , University of Isfahan , 81746-73441 , Isfahan , Iran
| | - Zahra Heidari
- Department of Chemistry , University of Isfahan , 81746-73441 , Isfahan , Iran
| | - Reza Omidyan
- Department of Chemistry , University of Isfahan , 81746-73441 , Isfahan , Iran
| |
Collapse
|
6
|
Ma C, Chan CTL, Chan RCT, Wong AKW, Chung BPY, Kwok WM. Photoprotection or photodamage: a direct observation of nonradiative dynamics from 2-ethylhexyl 4-dimethylaminobenzoate sunscreen agent. Phys Chem Chem Phys 2018; 20:24796-24806. [PMID: 30229763 DOI: 10.1039/c8cp04447c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Apart from being an analogue of the prototype for photoinduced intramolecular charge transfer (ICT), 2-ethylhexyl 4-dimethylaminobenzoate (EHDMABA) is also one of the earliest patented and most commonly used sunscreen components. There is, however, little documented information about the photophysics and factors affecting the photophysics of this molecule. Such information is of importance for both the understanding of the ICT reaction and assessing the underlying process of photoprotection, especially in view of the "sunscreen controversy" that has arisen from the contrasting in vivo vs. in vitro photobiological results on this and related UV filters. We report herein a femtosecond broadband time-resolved fluorescence (fs-TRF), complemented by transient absorption (fs-TA) to allow a full probe of the excited state cascades for EHDMABA and two of its derivatives in solvents of varied properties. The results provide direct evidence for a nearly solvent independent inner sphere ICT reaction occurring on the sub-picosecond time scale, and an ensuing solvent dictated deactivation of the ICT state. The ICT state in the aprotic solvent acetonitrile decayed solely through the intrinsic intersystem crossing (ISC) to produce a potentially harmful triplet excited state. In the protic solvent, the solvation and formation of ICT-induced solute-solvent hydrogen (H)-bonding opened the originally inaccessible internal conversion (IC) channel of the ICT state, leading to the rapid reformation of the ground state molecule with a unitary efficiency in the aqueous solution. This H-bonding-mediated IC restrained or eliminated the intrinsic ISC, providing a mechanism at the molecular level for the benign dissipation of the electronic excitation. The precise rate of IC was observed to vary with the alkoxy substituent and its efficiency was affected by the H-bonding capacity of the solvent. The findings of this work demonstrate the pivotal role of the microenvironment and the direct participation of solvent molecules through H-bonding in drastically altering the nonradiative dynamics and promoting or inhibiting photostability and photoprotection. This may assist in developing next-generation UV filters and help in improving formulation design for the optimal efficacy of sunscreen products. The pronounced H-bonding-induced fluorescence quenching and variation in the fluorescence wavelength imply that these molecules may also serve as a sensitive fluorescence probe for the H-bonding properties of the microenvironment.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, P. R. China.
| | | | | | | | | | | |
Collapse
|
7
|
Ma C, Ou YQ, Chan CTL, Wong AKW, Chan RCT, Chung BPY, Jiang C, Wang ML, Kwok WM. Nonradiative dynamics determined by charge transfer induced hydrogen bonding: a combined femtosecond time-resolved fluorescence and density functional theoretical study of methyl dimethylaminobenzoate in water. Phys Chem Chem Phys 2018; 20:1240-1251. [DOI: 10.1039/c7cp05140a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding with water alters nonradiative pathway of a twisted charge transfer state in methyl dimethylaminobenzoate.
Collapse
Affiliation(s)
- Chensheng Ma
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Yue-Qun Ou
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Chris Tsz-Leung Chan
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Allen Ka-Wa Wong
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Ruth Chau-Ting Chan
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Bowie Po-Yee Chung
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| | - Chao Jiang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Ming-Liang Wang
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Wai-Ming Kwok
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- P. R. China
| |
Collapse
|
8
|
Kuş N, Sharma A, Fausto R. First observation of methane photochemical generation from an N,N-dimethylamino-substituted arene: the case of 4-(N,N-dimethylamino)benzaldehyde (DMABA). Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Dobkowski J, Kijak M, Sazanovich IV, Waluk J. Solvent-Controlled Excited State Relaxation Path of 4-Acetyl-4′-(dimethylamino)biphenyl. J Phys Chem B 2015; 119:7294-307. [DOI: 10.1021/jp510856u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J. Dobkowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland
| | - M. Kijak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland
| | - I. V. Sazanovich
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland
| | - J. Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland
| |
Collapse
|
10
|
Mercier Y, Reguero M. Looking for the species responsible of the anomalous fluorescence band in ortho-, meta- and para-(di-tert-butylamino)benzonitrile. COMPUT THEOR CHEM 2014. [DOI: 10.1016/j.comptc.2014.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Fujiwara T, Reichardt C, Aaron Vogt R, Crespo-Hernández CE, Zgierski MZ, Lim EC. Electronic spectra and excited-state dynamics of 4-fluoro-N,N-dimethylaniline. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
López-Arteaga R, Stephansen AB, Guarin CA, Sølling TI, Peon J. The Influence of Push–Pull States on the Ultrafast Intersystem Crossing in Nitroaromatics. J Phys Chem B 2013; 117:9947-55. [DOI: 10.1021/jp403602v] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rafael López-Arteaga
- Instituto
de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,
México, 04510,
D.F., México
| | - Anne B. Stephansen
- Department
of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2100
Copenhagen Ø, Denmark
| | - Cesar A. Guarin
- Instituto
de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,
México, 04510,
D.F., México
| | - Theis I. Sølling
- Department
of Chemistry, University of Copenhagen,
Universitetsparken 5, DK-2100
Copenhagen Ø, Denmark
| | - Jorge Peon
- Instituto
de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria,
México, 04510,
D.F., México
| |
Collapse
|
13
|
Photophysics of Push-Pull Distyrylfurans, Thiophenes and Pyridines by Fast and Ultrafast Techniques. Chemphyschem 2013; 14:970-81. [DOI: 10.1002/cphc.201200762] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 12/19/2012] [Indexed: 11/07/2022]
|
14
|
Park M, Kim CH, Joo T. Multifaceted Ultrafast Intramolecular Charge Transfer Dynamics of 4-(Dimethylamino)benzonitrile (DMABN). J Phys Chem A 2013; 117:370-7. [DOI: 10.1021/jp310842z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Myeongkee Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang
790-784, Korea
| | - Chul Hoon Kim
- Max Planck
Center for Attosecond
Science (MPC-AS), POSTECH, Pohang 790-784,
Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang
790-784, Korea
| |
Collapse
|
15
|
Theoretical investigation on proton-induced intramolecular charge transfer of a D-π-A dye for a pH molecular switch. COMPUT THEOR CHEM 2011. [DOI: 10.1016/j.comptc.2011.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Zgierski MZ, Fujiwara T, Lim EC. Coupled Electron and Proton Transfer Processes in 4-Dimethylamino-2-hydroxy-benzaldehyde. J Phys Chem A 2011; 115:10009-17. [DOI: 10.1021/jp203009j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marek Z. Zgierski
- Steacie Institute for Molecular Science, National Research Council of Canada, Ottawa, K1A 0R6 Canada
| | - Takashige Fujiwara
- Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117, United States
| | - Edward C. Lim
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, The University of Akron, Akron, Ohio 44325-3601, United States
| |
Collapse
|
17
|
Coto PB, Serrano-Andrés L, Gustavsson T, Fujiwara T, Lim EC. Intramolecular charge transfer and dual fluorescence of 4-(dimethylamino)benzonitrile: ultrafast branching followed by a two-fold decay mechanism. Phys Chem Chem Phys 2011; 13:15182-8. [PMID: 21769358 DOI: 10.1039/c1cp21089k] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this contribution we present new experimental and theoretical results for the intramolecular charge transfer (ICT) reaction underlying the dual fluorescence of 4-(dimethylamino)benzonitrile (DMABN), which indicate that the fully twisted ICT (TICT) state is responsible for the time-resolved transient absorption spectrum while a distinct partially twisted ICT (pTICT) structure is suggested for the fluorescent ICT state.
Collapse
Affiliation(s)
- Pedro B Coto
- Interdisziplinäres Zentrum für Molekulare Materialien (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg Staudtstrasse 7/B2, D-91058 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
18
|
Experimental and PCM/TD-DFT investigation on the absorption and emission spectra of a light emitting material in various solvents. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Chan CTL, Cheng CCW, Ho KYF, Kwok WM. Femtosecond broadband time-resolved fluorescence and transient absorption study of the intramolecular charge transfer state of methyl 4-dimethylaminobenzoate. Phys Chem Chem Phys 2011; 13:16306-13. [DOI: 10.1039/c1cp21627a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Fujiwara T, Zgierski MZ, Lim EC. The role of the πσ* state in intramolecular charge transfer of 4-(dimethylamino)benzonitrile. Phys Chem Chem Phys 2011; 13:6779-83. [DOI: 10.1039/c0cp02706e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Carlotti B, Spalletti A, Šindler-Kulyk M, Elisei F. Ultrafast photoinduced intramolecular charge transfer in push–pull distyryl furan and benzofuran: solvent and molecular structure effect. Phys Chem Chem Phys 2011; 13:4519-28. [DOI: 10.1039/c0cp02337j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Fujiwara T, Zgierski MZ, Lim EC. Combined Experimental and Computational Study of Intramolecular Charge Transfer In p-N,N-Dimethylamino-p′-cyano-diphenylacetylene. J Phys Chem A 2010; 115:586-92. [DOI: 10.1021/jp109674t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takashige Fujiwara
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, The University of Akron, Akron, Ohio 44325-3601, United States
| | - Marek Z. Zgierski
- Steacie Institute for Molecular Science, National Research Council of Canada, Ottawa, K1A 0R6 Canada
| | - Edward C. Lim
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, The University of Akron, Akron, Ohio 44325-3601, United States
| |
Collapse
|