1
|
Elucidating the enhanced binding affinity of a double mutant SP-D with trimannose on the influenza A virus using molecular dynamics. Comput Struct Biotechnol J 2022; 20:4984-5000. [PMID: 36097510 PMCID: PMC9452405 DOI: 10.1016/j.csbj.2022.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The Asp325Ala mutation in SP-D promotes a trimannose conformational change to a more stable state. The Arg343Val mutation in SP-D reduces its interaction with Glu333 to increase the binding affinity with trimannose. The Arg343Val mutation contributes more to the increase of SP-D’s binding affinity with trimannose than Asp325Ala.
Surfactant protein D (SP-D) is an essential component of the human pulmonary surfactant system, which is crucial in the innate immune response against glycan-containing pathogens, including Influenza A viruses (IAV) and SARS-CoV-2. Previous studies have shown that wild-type (WT) SP-D can bind IAV but exhibits poor antiviral activities. However, a double mutant (DM) SP-D consisting of two point mutations (Asp325Ala and Arg343Val) inhibits IAV more potently. Presently, the structural mechanisms behind the point mutations’ effects on SP-D’s binding affinity with viral surface glycans are not fully understood. Here we use microsecond-scale, full-atomistic molecular dynamics (MD) simulations to understand the molecular mechanism of mutation-induced SP-D’s higher antiviral activity. We find that the Asp325Ala mutation promotes a trimannose conformational change to a more stable state. Arg343Val increases the binding with trimannose by increasing the hydrogen bonding interaction with Glu333. Free energy perturbation (FEP) binding free energy calculations indicate that the Arg343Val mutation contributes more to the increase of SP-D’s binding affinity with trimannose than Asp325Ala. This study provides a molecular-level exploration of how the two mutations increase SP-D binding affinity with trimannose, which is vital for further developing preventative strategies for related diseases.
Collapse
Key Words
- CRD, Carbohydrate Recognition Domain
- DM, Double mutant
- FEP, Free Energy Perturbation
- Free Energy Perturbation
- HA, Hemagglutinin
- IAV, Influenza A Viruses
- MD, Molecular Dynamics
- Molecular Dynamics Simulation
- PAP, Pulmonary Alveolar Proteinosis
- PME, Particle Mesh Ewald
- PS, Pulmonary Surfactant
- Protein-Glycan Complexes
- RMSD, Root Mean Square Deviation
- RMSF, Root Mean Square Fluctuation
- SP-A, Surfactant Protein A
- SP-B, Surfactant Protein B
- SP-C, Surfactant Protein C
- SP-D, Surfactant Protein D
- Surfactant Protein D
- WT, Wild-type
- λ-REMD, λ-Replica-Exchange Molecular Dynamics
Collapse
|
2
|
Gao S, Na R, Yang L, Yu H, Zhao X, Huang X. Investigation of binding modes of spider toxin–human voltage-gated sodium channel subtybe 1.7. J Biomol Struct Dyn 2020; 39:4981-4989. [DOI: 10.1080/07391102.2020.1783363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Shasha Gao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Risong Na
- College of plant protection, Henan Agricultural University, Zhengzhou, P.R China
| | - Lianjuan Yang
- Department of Mycology, Shanghai Dermatology Hospital, Shanghai, China
| | - Hui Yu
- College of Science, Beihua Univesrity, Jilin, China
| | - Xi Zhao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Xuri Huang
- College of plant protection, Henan Agricultural University, Zhengzhou, P.R China
| |
Collapse
|
3
|
Venthur H, Machuca J, Godoy R, Palma-Millanao R, Zhou JJ, Larama G, Bardehle L, Quiroz A, Ceballos R, Mutis A. Structural investigation of selective binding dynamics for the pheromone-binding protein 1 of the grapevine moth, Lobesia botrana. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21557. [PMID: 31062883 DOI: 10.1002/arch.21557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
The European grapevine moth, Lobesia botrana (Denis & Schiffermüller), is a serious pest in vineyards in North and South America. Mating disruption techniques have been used to control and monitor L. botrana on the basis of its sexual communication. This needs a well-tuned olfactory system, in which it is believed that pheromone-binding proteins (PBPs) are key players that transport pheromones in the antennae of moths. In this study, the selectivity of a PBP, named as LbotPBP1, was tested by fluorescence binding assays against 11 sex pheromone components and 6 host plant volatiles. In addition, its binding mechanism was predicted on the basis of structural analyses by molecular docking and complex and steered molecular dynamics (SMD). Our results indicate that LbotPBP1 binds selectively to sex pheromone components over certain host plant volatiles, according to both in vitro and in silico tests. Thus, chain length (14 carbon atoms) and functional groups (i.e., alcohol and ester) appear to be key features for stable binding. Likewise, residues such as Phe12, Phe36, and Phe118 could participate in unspecific binding processes, whilst Ser9, Ser56, and Trp114 could participate in the specific recognition and stabilization of sex pheromones instead of host plant volatiles. Moreover, our SMD approach supported 11-dodecenyl acetate as the best ligand for LbotPBP1. Overall, the dynamics simulations, contact frequency analysis and SMD shed light on the binding mechanism of LbotPBP1 and could overcome the imprecision of molecular docking, supporting the in vitro binding assays. Finally, the role of LbotPBP1 in the chemical ecology of L. botrana is discussed.
Collapse
Affiliation(s)
- Herbert Venthur
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - Juan Machuca
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Carrera Bioquímica, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Godoy
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - Rubén Palma-Millanao
- Millenium Nucleus Centre in Molecular Ecology and Evolutionary Applications in Agroecosystems, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Herts, United Kingdom
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Giovanni Larama
- Departamento de Ingeniería Matemática, Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia de Modelación y Computación Científica, Universidad de La Frontera, Temuco, Chile
| | - Leonardo Bardehle
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Ceballos
- Laboratorio de Ecología Química, Centro Tecnológico de Control Biológico, Instituto de Investigaciones Agropecuarias (INIA)-Quilamapu, Chillán, Chile
| | - Ana Mutis
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
- Centro de Excelencia de Modelación y Computación Científica, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
4
|
Roopa L, Akshai PS, Pravin Kumar R. Connecting the dots in the mechanism of action of Cucurbitacin E (CurE) - path analysis and steered molecular dynamics reveal the precise site of entry and the passage of CurE in filamentous actin. J Biomol Struct Dyn 2019; 38:635-646. [PMID: 30896293 DOI: 10.1080/07391102.2019.1593243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cucurbitacin E (CurE) modulates actin cytoskeleton by forming an irreversible covalent bond with Cys257 of actin. The reported binding conformation of CurE is deeply buried in the subdomain 4 of actin and is closely situated to the ATP-binding site. The entry and the path taken by CurE to reach this buried site remain a mystery. In this study, steered molecular dynamics (SMD) simulations were conducted to delineate the diffusion of CurE to its binding site. SMD simulations reveal that the distinctive entry site of CurE found in subdomain 4 is by itself a closed and compact region of two loops lying beside each other like a closed door and CurE induces it to open. From this point, CurE moves toward its binding site through a path facilitated by Thr188, Leu261, Ile267, Ile309, Tyr306. This study is also an insight into how CurE distinctly differentiates its tunnel to the binding site from the ATP-binding site. The conformational changes of CurE along the path to the binding site are surprisingly very minimal and closely resemble the attack conformation at the end of simulation. The study reveals that the little energy spent by the molecule is compensated by the enthalpic contribution to binding-free energy barrier making it undoubtedly the most preferred path of CurE. This study is the first of its kind in which the SMD was used to derive the complete and continuous translocation of one of the most potent phytochemicals, CurE through the binding site gorge of actin. [Formula: see text] Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- L Roopa
- Bharathiar University, Coimbatore, Tamil Nadu, India.,Department of Biotechnology, Mount Carmel College, Bangalore, Karnataka, India
| | - P S Akshai
- Kcat Enzymatic Pvt Ltd, Bangalore, Karnataka, India
| | - R Pravin Kumar
- Bharathiar University, Coimbatore, Tamil Nadu, India.,Kcat Enzymatic Pvt Ltd, Bangalore, Karnataka, India
| |
Collapse
|
5
|
Xue YL, Zhang Q, Sun Y, Zhou X, Hurley IP, Jones GW, Song Y. Using steered molecular dynamics to study the interaction between ADP and the nucleotide-binding domain of yeast Hsp70 protein Ssa1. J Comput Aided Mol Des 2018; 32:1217-1227. [PMID: 30392073 DOI: 10.1007/s10822-018-0136-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/19/2018] [Indexed: 11/25/2022]
Abstract
Genetics experiments have identified six mutations located in the subdomain IA (A17V, R23H, G32D, G32S, R34K, V372I) of Ssa1 that influence propagation of the yeast [PSI+] prion. However, the underlining molecular mechanisms of these mutations are still unclear. The six mutation sites are present in the IA subdomain of the nucleotide-binding domain (NBD). The ATPase subdomain IA is a critical mediator of inter-domain allostery in Hsp70 molecular chaperones, so the mutation and changes in this subdomain may influence the function of the substrate-binding domain. In addition, ADP release is a rate-limiting step of the ATPase cycle and dysregulation of the ATPase cycle influences the propagation of the yeast [PSI+] prion. In this work, steered molecular dynamics (SMD) simulations were performed to explore the interaction between ADP and NBD. Results suggest that during the SMD simulations, hydrophobic interactions are predominant and variations in the binding state of ADP within the mutants is a potential reason for in vivo effects on yeast [PSI+] prion propagation. Additionally, we identify the primary residues in the ATPase domain that directly constitute the main hydrophobic interaction network and directly influence the ADP interaction state with the NBD of Ssa1. Furthermore, this in silico analysis reaffirms the importance of previously experimentally-determined residues in the Hsp70 ATPase domain involved in ADP binding and also identifies new residues potentially involved in this process.
Collapse
Affiliation(s)
- You-Lin Xue
- School of Environmental Science, College of Environment, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, Liaoning, China.,College of Light Industry, Liaoning University, Shenyang, 110036, China
| | - Qiaoshi Zhang
- School of Environmental Science, College of Environment, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, Liaoning, China
| | - Yuna Sun
- School of Environmental Science, College of Environment, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, Liaoning, China
| | - Xiaohong Zhou
- School of Environmental Science, College of Environment, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, Liaoning, China
| | - Ian P Hurley
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds, LS13HE, UK
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Faculty of Health and Social Sciences, Leeds Beckett University, Leeds, LS13HE, UK
| | - Youtao Song
- School of Environmental Science, College of Environment, Liaoning University, No. 66 Chongshan Middle Road, Huanggu District, Shenyang, 110036, Liaoning, China.
| |
Collapse
|
6
|
Zhou H, Yu H, Zhao X, Yang L, Huang X. Molecular dynamics simulations investigate the pathway of substrate entry active site of rhomboid protease. J Biomol Struct Dyn 2018; 37:3445-3455. [PMID: 30175657 DOI: 10.1080/07391102.2018.1517609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Rhomboid proteases can catalyze peptide bond cleavage and participate in abundant biological processes encompassing all branches of life; however, the pathway for substrate entry into its active site remains ambiguous. Here, the two possible pathways are preliminarily determined through molecular dynamics: One pathway is between Tm2 and Tm5, and the other is between Loop3 and Loop5. Then, the umbrella sampling simulations are performed to investigate the more feasible pathway for substrate entry. The results show that free energy barriers along the two pathways are similar; in the pathway 1, Trp236 and Trp157 as pivotal residues are responsible for the rotation of substrate in the binding process; in the pathway 2, among some important residues, the residue His150 plays an important role in substrate entry. Further, combining with previous experiment results, it is concluded that the substrate is inclined to enter into the active site along pathway 2. Our results are important for further understanding the function and catalysis mechanism of rhomboid proteases. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hua Zhou
- a Institute of Theoretical Chemistry , Jilin University , Changchun , China
| | - Hui Yu
- b College of Chemistry and Biology , Beihua University , Jilin , China
| | - Xi Zhao
- a Institute of Theoretical Chemistry , Jilin University , Changchun , China
| | - Lianjuan Yang
- c The Fungal Reference Laboratory of Shanghai Dermatology Hospital , Shanghai , China
| | - Xuri Huang
- a Institute of Theoretical Chemistry , Jilin University , Changchun , China
| |
Collapse
|
7
|
Do PC, Lee EH, Le L. Steered Molecular Dynamics Simulation in Rational Drug Design. J Chem Inf Model 2018; 58:1473-1482. [DOI: 10.1021/acs.jcim.8b00261] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Phuc-Chau Do
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Eric H. Lee
- Department of Medicine and Division of Hematology and Oncology, Loma Linda University Medical Center, Loma Linda, California 92350, United States
| | - Ly Le
- School of Biotechnology, International University, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
Gao Q, Lu C, Wang XW, Zhang JW, Song Y, Xue YL. Molecular dynamics simulation and steered molecular dynamics simulation on irisin dimers. J Mol Model 2018; 24:95. [PMID: 29549444 DOI: 10.1007/s00894-018-3609-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/30/2018] [Indexed: 11/26/2022]
Abstract
Irisin is found closely associated with promoting the browning of beige fat cells in white adipose tissue. The crystal structure reveals that irisin forms a continuous inter-subunit β-sheet dimer. Here, molecular dynamics (MD) simulation and steered molecular dynamics (SMD) simulation were performed to investigate the dissociation process and the intricate interactions between the two irisin monomers. In the process of MD, the interactions between the monomers were roughly analyzed through the average numbers of both hydrophobic contacts and H-bonds. Then, SMD was performed to investigate the accurate interaction energy between the monomers. By the analysis of dissociation energy, the van der Waals (vdW) force was identified as the major energy to maintain the dimer structure, which also verified the results of MD simulation. Meanwhile, 11 essential residues were discovered by the magnitude of rupture force during dissociation. Among them, residues Arg75, Glu79, Ile77, Ala88, and Trp90 were reported in a previous study using the method of mutagenesis and size exclusion chromatography, and several new important residues (Arg72, Leu74, Phe76, Gln78, Val80, and Asp91) were also identified. Interestingly, the new important residues that we discovered and the important residues that were reported are located in the opposite side of the β-sheet of the dimer.
Collapse
Affiliation(s)
- Qi Gao
- College of Light Industry, Liaoning University, Shenyang, 110036, China
- Liaoning Administrative College, Shenyang, 110161, China
| | - Chao Lu
- College of Light Industry, Liaoning University, Shenyang, 110036, China
| | - Xiao-Wen Wang
- College of Light Industry, Liaoning University, Shenyang, 110036, China
| | - Jun-Wei Zhang
- College of Light Industry, Liaoning University, Shenyang, 110036, China
| | - Youtao Song
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
9
|
Huang H, Han F, Guan S, Qian M, Wan Y, Shan Y, Zhang H, Wang S. Insight into the process of product expulsion in cellobiohydrolase Cel6A from Trichoderma reesei by computational modeling. J Biomol Struct Dyn 2018. [PMID: 29519213 DOI: 10.1080/07391102.2018.1450164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycoside hydrolase cellulase family 6 from Trichoderma reesei (TrCel6A) is an important cellobiohydrolase to hydrolyze cellooligosaccharide into cellobiose. The knowledge of enzymatic mechanisms is critical for improving the conversion efficiency of cellulose into ethanol or other chemicals. However, the process of product expulsion, a key component of enzymatic depolymerization, from TrCel6A has not yet been described in detail. Here, conventional molecular dynamics and steered molecular dynamics (SMD) were applied to study product expulsion from TrCel6A. Tyr103 may be a crucial residue in product expulsion given that it exhibits two different posthydrolytic conformations. In one conformation, Tyr103 rotates to open the -3 subsite. However, Tyr103 does not rotate in the other conformation. Three different routes for product expulsion were proposed on the basis of the two different conformations. The total energy barriers of the three routes were calculated through SMD simulations. The total energy barrier of product expulsion through Route 1, in which Tyr103 does not rotate, was 22.2 kcal·mol-1. The total energy barriers of product expulsion through Routes 2 and 3, in which Tyr103 rotates to open the -3 subsite, were 10.3 and 14.4 kcal·mol-1, respectively. Therefore, Routes 2 and 3 have lower energy barriers than Route 1, and Route 2 is the thermodynamically optimal route for product expulsion. Consequently, the rotation of Tyr103 may be crucial for product release from TrCel6A. Results of this work have potential applications in cellulase engineering.
Collapse
Affiliation(s)
- Houhou Huang
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Fei Han
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Shanshan Guan
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China.,b National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China
| | - Mengdan Qian
- c State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , People's Republic of China
| | - Yongfeng Wan
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Yaming Shan
- b National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China
| | - Hao Zhang
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Song Wang
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| |
Collapse
|
10
|
Li Y, Liao M, Zhou J. Catechol-cation adhesion on silica surfaces: molecular dynamics simulations. Phys Chem Chem Phys 2018; 19:29222-29231. [PMID: 29067370 DOI: 10.1039/c7cp05284g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the interaction mechanism between catechol-cation and inorganic surfaces is vital for controlling the interfacial adhesion behavior. In this work, molecular dynamics simulations are employed to study the adhesion of siderophore analogues (Tren-Lys-Cam, Tren-Arg-Cam and Tren-His-Cam) on silica surfaces with different degrees of ionization and the effects of cationic amino acids and ionic strength on adhesion are discussed. Simulation results indicate that adhesion of catechol-cation onto the ionized silica surface is dominated by electrostatic interactions. At different degrees of ionization, the rank of the adhesions of three siderophore analogues on silica is different. Further analysis shows that the amino acid terminus has a large influence on the adhesion process, especially histidine adhesion on negatively charged surfaces. Tren-Lys-Cam (TLC) has a larger adhesion free energy than Tren-Arg-Cam (TAC) at a higher degree of ionization (18%); both the bulkier structure and delocalized charge of Arg decreased the cation's electrostatic interaction with the charged silica. In addition, the adhesion free energy on ionized silica surfaces decreased with increasing ionic strength of aqueous solutions. A linear correlation between the potential of mean force obtained from umbrella sampling and the rupture force via steered molecular dynamics simulations for siderophore analogue adhesion on silica surfaces is also found. This work may provide some guidance for developing the next generation underwater adhesives.
Collapse
Affiliation(s)
- Yingtu Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | |
Collapse
|
11
|
Xue YL, Zhou L, Sun Y, Li H, Jones GW, Song Y. Steered molecular dynamics simulation of the binding of the bovine auxilin J domain to the Hsc70 nucleotide-binding domain. J Mol Model 2017; 23:320. [PMID: 29063205 DOI: 10.1007/s00894-017-3453-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/05/2017] [Indexed: 11/25/2022]
Abstract
The Hsp70 and Hsp40 chaperone machine plays critical roles in protein folding, membrane translocation, and protein degradation by binding and releasing protein substrates in a process that utilizes ATP. The activities of the Hsp70 family of chaperones are recruited and stimulated by the J domains of Hsp40 chaperones. However, structural information on the Hsp40-Hsp70 complex is lacking, and the molecular details of this interaction are yet to be elucidated. Here we used steered molecular dynamics (SMD) simulations to investigate the molecular interactions that occur during the dissociation of the auxilin J domain from the Hsc70 nucleotide-binding domain (NBD). The changes in energy observed during the SMD simulation suggest that electrostatic interactions are the dominant type of interaction. Additionally, we found that Hsp70 mainly interacts with auxilin through the surface residues Tyr866, Arg867, and Lys868 of helix II, His874, Asp876, Lys877, Thr879, and Gln881 of the HPD loop, and Phe891, Asn895, Asp896, and Asn903 of helix III. The conservative residues Tyr866, Arg867, Lys868, His874, Asp876, Lys877, and Phe891 were also found in a previous study to be indispensable to the catalytic activity of the DnaJ J domain and the binding of it with the NBD of DnaK. The in silico identification of the importance of auxilin residues Asn895, Asp896, and Asn903 agrees with previous mutagenesis and NMR data suggesting that helix III of the J domain of the T antigen interacts with Hsp70. Furthermore, our data indicate that Thr879 and Gln881 from the HPD loop are also important as they mediate the interaction between the bovine auxilin J domain and Hsc70.
Collapse
Affiliation(s)
- You-Lin Xue
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.,College of Light Industry, Liaoning University, Shenyang, 110036, China
| | - Lei Zhou
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Yuna Sun
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Science, Liaoning University, Shenyang, 110036, China
| | - Hui Li
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Science, Liaoning University, Shenyang, 110036, China
| | - Gary W Jones
- Centre for Biomedical Science Research, School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK
| | - Youtao Song
- School of Environmental Science, Liaoning University, Shenyang, 110036, China. .,Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Science, Liaoning University, Shenyang, 110036, China.
| |
Collapse
|
12
|
Qian M, Guan S, Shan Y, Zhang H, Wang S. Structural and molecular basis of cellulase Cel48F by computational modeling: Insight into catalytic and product release mechanism. J Struct Biol 2016; 194:347-56. [DOI: 10.1016/j.jsb.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/04/2016] [Accepted: 03/14/2016] [Indexed: 11/26/2022]
|
13
|
Zhang Z, Zhang J, Zheng Q, Kong C, Li Z, Zhang H, Ma J. Theoretical investigation on binding process of allophanate to allophanate hydrolase. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-5108-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Batista MLS, Pérez-Sánchez G, Gomes JRB, Coutinho JAP, Maginn EJ. Evaluation of the GROMOS 56ACARBO Force Field for the Calculation of Structural, Volumetric, and Dynamic Properties of Aqueous Glucose Systems. J Phys Chem B 2015; 119:15310-9. [DOI: 10.1021/acs.jpcb.5b08155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marta L. S. Batista
- Departamento
de Química, CICECO, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
- Department
of Chemical and Biomolecular Engineering, 182 Fitzpatrick Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Germán Pérez-Sánchez
- Departamento
de Química, CICECO, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - José R. B. Gomes
- Departamento
de Química, CICECO, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - João A. P. Coutinho
- Departamento
de Química, CICECO, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Edward J. Maginn
- Department
of Chemical and Biomolecular Engineering, 182 Fitzpatrick Hall, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
15
|
Theoretical investigation on the restoring step of the carbonic anhydrase catalytic cycle for natural and promiscuous substrates. Arch Biochem Biophys 2015; 582:101-6. [DOI: 10.1016/j.abb.2015.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/06/2015] [Accepted: 03/25/2015] [Indexed: 11/19/2022]
|
16
|
Protein modeling and molecular dynamics simulation of the two novel surfactant proteins SP-G and SP-H. J Mol Model 2014; 20:2513. [PMID: 25381619 PMCID: PMC7101549 DOI: 10.1007/s00894-014-2513-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 10/21/2014] [Indexed: 11/14/2022]
Abstract
Surfactant proteins are well known from the human lung where they are responsible for the stability and flexibility of the pulmonary surfactant system. They are able to influence the surface tension of the gas–liquid interface specifically by directly interacting with single lipids. This work describes the generation of reliable protein structure models to support the experimental characterization of two novel putative surfactant proteins called SP-G and SP-H. The obtained protein models were complemented by predicted posttranslational modifications and placed in a lipid model system mimicking the pulmonary surface. Molecular dynamics simulations of these protein-lipid systems showed the stability of the protein models and the formation of interactions between protein surface and lipid head groups on an atomic scale. Thereby, interaction interface and strength seem to be dependent on orientation and posttranslational modification of the protein. The here presented modeling was fundamental for experimental localization studies and the simulations showed that SP-G and SP-H are theoretically able to interact with lipid systems and thus are members of the surfactant protein family.
Collapse
|
17
|
Zhang JL, Zheng QC, Li ZQ, Zhang HX. Theoretical evaluation and improvement on the potency of the rhodanine-based inhibitors for human serotoninN-acetyltransferase. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2013.854894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Using steered molecular dynamics to predict and assess Hsp70 substrate-binding domain mutants that alter prion propagation. PLoS Comput Biol 2013; 9:e1002896. [PMID: 23382668 PMCID: PMC3561046 DOI: 10.1371/journal.pcbi.1002896] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/08/2012] [Indexed: 11/19/2022] Open
Abstract
Genetic screens using Saccharomyces cerevisiae have identified an array of cytosolic Hsp70 mutants that are impaired in the ability to propagate the yeast [PSI+] prion. The best characterized of these mutants is the Ssa1 L483W mutant (so-called SSA1-21), which is located in the substrate-binding domain of the protein. However, biochemical analysis of some of these Hsp70 mutants has so far failed to provide major insight into the specific functional changes in Hsp70 that cause prion impairment. In order to gain a better understanding of the mechanism of Hsp70 impairment of prions we have taken an in silico approach and focused on the Escherichia coli Hsp70 ortholog DnaK. Using steered molecular dynamics simulations (SMD) we demonstrate that DnaK variant L484W (analogous to SSA1-21) is predicted to bind substrate more avidly than wild-type DnaK due to an increase in numbers of hydrogen bonds and hydrophobic interactions between chaperone and peptide. Additionally the presence of the larger tryptophan side chain is predicted to cause a conformational change in the peptide-binding domain that physically impairs substrate dissociation. The DnaK L484W variant in combination with some SSA1-21 phenotypic second-site suppressor mutations exhibits chaperone-substrate interactions that are similar to wild-type protein and this provides a rationale for the phenotypic suppression that is observed. Our computational analysis fits well with previous yeast genetics studies regarding the functionality of the Ssa1-21 protein and provides further evidence suggesting that manipulation of the Hsp70 ATPase cycle to favor the ADP/substrate-bound form impairs prion propagation. Furthermore, we demonstrate how SMD can be used as a computational tool for predicting Hsp70 peptide-binding domain mutants that impair prion propagation. Direct non-covalent interactions between protein substrates and molecular chaperones play crucial roles in the protein folding process. [PSI+] is a prion of the yeast Saccharomyces cerevisiae, which is formed by mis-folding of the native Sup35 protein in a process analogous to formation of prions in mammals. While much genetic data exists showing a clear role for Hsp70 in prion propagation, biochemical data has yet to provide a clear link to how Hsp70 functions in prion propagation or how some Hsp70 mutants successfully impair in vivo propagation of prions. This paper employs a novel simulation method termed “steered molecular dynamics” to explore the different types and amounts of non-covalent interactions between wild type and mutated Hsp70, with a model substrate. Extrapolating the in silico data allowed us to decipher how a mutant Hsp70 impairs yeast prion propagation and allows us to predict other Hsp70 mutants that should behave in the same manner and to test these predictions in a yeast-based system. Our computational data shows that increasing the binding affinity of Hsp70 for substrate is one way of impairing prion propagation, a proposal that correlates very well with previous experimental genetic data.
Collapse
|
19
|
Zhang JL, Zheng QC, Li ZQ, Zhang HX. How does (E)-2-(acetamidomethylene)succinate bind to its hydrolase? From the binding process to the final result. PLoS One 2013; 8:e53811. [PMID: 23308285 PMCID: PMC3538738 DOI: 10.1371/journal.pone.0053811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
The binding of (E)-2-(acetamidomethylene)succinate (E-2AMS) to E-2AMS hydrolase is crucial for biological function of the enzyme and the last step reaction of vitamin B(6) biological degradation. In the present study, several molecular simulation methods, including molecular docking, conventional molecular dynamics (MD), steered MD (SMD), and free energy calculation methods, were properly integrated to investigate the detailed binding process of E-2AMS to its hydrolase and to assign the optimal enzyme-substrate complex conformation. It was demonstrated that the substrate binding conformation with trans-form amide bond is energetically preferred conformation, in which E-2AMS's pose not only ensures hydrogen bond formation of its amide oxygen atom with the vicinal oxyanion hole but also provides probability of the hydrophobic interaction between its methyl moiety and the related enzyme's hydrophobic cavity. Several key residues, Arg146, Arg167, Tyr168, Arg179, and Tyr259, orientate the E-2AMS's pose and stabilize its conformation in the active site via the hydrogen bond interaction with E-2AMS. Sequentially, the binding process of E-2AMS to E-2AMS hydrolase was studied by SMD simulation, which shows the surprising conformational reversal of E-2AMS. Several important intermediate structures and some significant residues were identified in the simulation. It is stressed that Arg146 and Arg167 are two pivotal residues responsible for the conformational reversal of E-2AMS in the binding or unbinding. Our research has shed light onto the full binding process of the substrate to E-2AMS hydrolase, which could provide more penetrating insight into the interaction of E-2AMS with the enzyme and would help in the further exploration on the catalysis mechanism.
Collapse
Affiliation(s)
- Ji-Long Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, People's Republic of China
| | - Qing-Chuan Zheng
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zheng-Qiang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hong-Xing Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
- * E-mail:
| |
Collapse
|
20
|
He J, Xu L, Zhang S, Guan J, Shen M, Li H, Song Y. Steered molecular dynamics simulation of the binding of the β2 and β3 regions in domain-swapped human cystatin C dimer. J Mol Model 2012; 19:825-32. [PMID: 23065120 DOI: 10.1007/s00894-012-1609-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Abstract
The crystal structure of the human cystatin C (hCC) dimer revealed that a stable twofold-symmetric dimer was formed via 3D domain swapping. Domain swapping with the need for near-complete unfolding has been proposed as a possible route for amyloid fibril initiation. Thus, the interesting interactions that occur between the two molecules may be important for the further aggregation of the protein. In this work, we performed steered molecular dynamics (SMD) simulations to investigate the dissociation of the β2 and β3 strands in the hCC dimer. The energy changes observed during the SMD simulations showed that electrostatic interactions were the dominant interactions involved in stabilizing the two parts of the dimer during the early stages of SMD simulation, whereas van der Waals (VDW) interactions and electrostatic interactions were equally matched during the latter stages. Furthermore, our data indicated that the two parts of the dimer are stabilized by intermolecular hydrogen bonds among the residues Arg51 (β2), Gln48 (β2), Asp65 (β3), and Glu67 (β3), salt bridges among the residues Arg53 (β2), Arg51 (β2), and Asp65 (β3), and VDW interactions among the residues Gln48 (β2), Arg51 (β2), Glu67 (β3), Asp65 (β3), Phe63 (β3), and Asn61 (β3). The residues Gln48 (β2), Arg51 (β2), Asp65 (β3) and Glu67 (β3) appear to be crucial, as they play important roles in both electrostatic and VDW interactions. Thus, the present study determined the key residues involved in the stabilization of the domain-swapped dimer structure, and also provided molecular-level insights into the dissociation process of the hCC dimer.
Collapse
Affiliation(s)
- Jianwei He
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, College of Life Science, Liaoning University, Shenyang, 110036, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Foley BL, Tessier MB, Woods RJ. Carbohydrate force fields. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2012; 2:652-697. [PMID: 25530813 PMCID: PMC4270206 DOI: 10.1002/wcms.89] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Carbohydrates present a special set of challenges to the generation of force fields. First, the tertiary structures of monosaccharides are complex merely by virtue of their exceptionally high number of chiral centers. In addition, their electronic characteristics lead to molecular geometries and electrostatic landscapes that can be challenging to predict and model. The monosaccharide units can also interconnect in many ways, resulting in a large number of possible oligosaccharides and polysaccharides, both linear and branched. These larger structures contain a number of rotatable bonds, meaning they potentially sample an enormous conformational space. This article briefly reviews the history of carbohydrate force fields, examining and comparing their challenges, forms, philosophies, and development strategies. Then it presents a survey of recent uses of these force fields, noting trends, strengths, deficiencies, and possible directions for future expansion.
Collapse
Affiliation(s)
- B. Lachele Foley
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Matthew B. Tessier
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Robert J. Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
22
|
Shen M, Guan J, Xu L, Yu Y, He J, Jones GW, Song Y. Steered molecular dynamics simulations on the binding of the appendant structure and helix-β2 in domain-swapped human cystatin C dimer. J Biomol Struct Dyn 2012; 30:652-61. [PMID: 22731964 DOI: 10.1080/07391102.2012.689698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have performed steered molecular dynamics (SMD) simulations to investigate the dissociation process between the appendant structure (AS) and helix-β2 in human cystatin C dimer. Energy change during SMD showed that electrostatic interactions, including hydrogen bonds and salt bridges, were the dominant interactions to stabilize the two parts of the dimer. Furthermore, our data indicated that residues, Asn35, Asp40, Ser44, Lys75, and Arg93 play significant roles in the formation of these electrostatic interactions. Docking studies suggested that the interactions between AS and β2-helix were formed following domain swapping and were responsible for stabilizing the structure of the domain-swapped dimer.
Collapse
Affiliation(s)
- Manli Shen
- Province Key Laboratory of Animal Resource and Epidemic Disease Prevention, Liaoning University, Shenyang, 110036, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang JL, Zheng QC, Li ZQ, Zhang HX. Molecular dynamics simulations suggest ligand's binding to nicotinamidase/pyrazinamidase. PLoS One 2012; 7:e39546. [PMID: 22761821 PMCID: PMC3383691 DOI: 10.1371/journal.pone.0039546] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
The research on the binding process of ligand to pyrazinamidase (PncA) is crucial for elucidating the inherent relationship between resistance of Mycobacterium tuberculosis and PncA’s activity. In the present study, molecular dynamics (MD) simulation methods were performed to investigate the unbinding process of nicotinamide (NAM) from two PncA enzymes, which is the reverse of the corresponding binding process. The calculated potential of mean force (PMF) based on the steered molecular dynamics (SMD) simulations sheds light on an optimal binding/unbinding pathway of the ligand. The comparative analyses between two PncAs clearly exhibit the consistency of the binding/unbinding pathway in the two enzymes, implying the universality of the pathway in all kinds of PncAs. Several important residues dominating the pathway were also determined by the calculation of interaction energies. The structural change of the proteins induced by NAM’s unbinding or binding shows the great extent interior motion in some homologous region adjacent to the active sites of the two PncAs. The structure comparison substantiates that this region should be very important for the ligand’s binding in all PncAs. Additionally, MD simulations also show that the coordination position of the ligand is displaced by one water molecule in the unliganded enzymes. These results could provide the more penetrating understanding of drug resistance of M. tuberculosis and be helpful for the development of new antituberculosis drugs.
Collapse
Affiliation(s)
- Ji-Long Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China.
| | | | | | | |
Collapse
|
24
|
Zhang JL, Zheng QC, Zhang HX. Theoretical improvement of the specific inhibitor of human carbonic anhydrase VII. Comput Biol Chem 2011; 35:50-6. [PMID: 21320803 DOI: 10.1016/j.compbiolchem.2011.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
The selectivity of a known arylsulfonamides inhibitor for two isozymes II and VII of human carbonic anhydrases (hCAs) was studied by homology modeling, molecular docking and molecular dynamics methods. The results show that the selectivity of the inhibitor for two isozymes is due to the different side chain lengths between N67 of hCA II and Q64 of hCA VII. One more methene group in the side chain of Q64 of hCA VII makes it possible to form the hydrogen bond with the bromide atom of the known inhibitor. From the point of view, the modification to the known inhibitor was performed to obtain an inhibitor with higher selectivity. The complex conformations of the new designed inhibitor and two isozymes designate the formation of the hydrogen bond between the newly added group (hydroxypropyl group) and Q64 of hCA VII but N67 of hCA II. The results of the binding free energy from the MM/PBSA approach also prove the selectivity improvement of the new inhibitor in comparison with the known inhibitor. The work will help the design of the isozyme-specific inhibitors of hCA VII.
Collapse
Affiliation(s)
- Ji-Long Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun, People's Republic of China
| | | | | |
Collapse
|
25
|
Zhang J, Zheng Q, Zhang H. Insight into the dynamic interaction of different carbohydrates with human surfactant protein D: molecular dynamics simulations. J Phys Chem B 2010; 114:7383-90. [PMID: 20450150 DOI: 10.1021/jp9113078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The unbinding process of three monosaccharides--galactose, glucose, and mannose--from human surfactant protein D (hSP-D) was investigated by the molecular docking and molecular dynamics methods to explore the cause of different dynamic interaction between these monosaccharides and the protein. The results show that the low affinity of galactose for hSP-D is attributed to the different binding conformation from the other two monosaccharides. The sugar coordinates to the calcium ion by the hydroxyl groups in the C2 and C3 atoms, so it cannot form the effective interaction with hSP-D. Glucose and mannose have similar binding conformations with hSP-D. Their difference in the affinity is induced by the interaction between the hydroxyl group in the C2 atom and the residue Asp325. The direction of the hydroxyl group in mannose results in the formation of the hydrogen bond with Asp325 and further makes mannose hydrogen-bond to the residues Glu329 and Arg343 by the hydroxyl groups in the C3, C4, and C6 atoms. As glucose only forms three hydrogen bonds with the residues Glu321, Asn323, and Glu329 by the hydroxyl groups in the C3 and C4 atoms, its interaction with hSP-D is weaker than that of mannose. Thus glucose has a lower energy barrier of dissociation. This work could provide the more penetrating understanding of hSP-D physiological functions.
Collapse
Affiliation(s)
- Jilong Zhang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P. R. China
| | | | | |
Collapse
|