1
|
Ito S, Kikuta M, Koike S, Szewczyk G, Sarna M, Zadlo A, Sarna T, Wakamatsu K. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method. Pigment Cell Melanoma Res 2017; 29:340-51. [PMID: 26920809 DOI: 10.1111/pcmr.12469] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/15/2016] [Indexed: 01/30/2023]
Abstract
Eumelanin photoprotects pigmented tissues from ultraviolet (UV) damage. However, UVA-induced tanning seems to result from the photooxidation of preexisting melanin and does not contribute to photoprotection. We investigated the mechanism of UVA-induced degradation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-melanin taking advantage of its solubility in a neutral buffer and using a differential spectrophotometric method to detect subtle changes in its structure. Our methodology is suitable for examining the effects of various agents that interact with reactive oxygen species (ROS) to determine how ROS is involved in the UVA-induced oxidative modifications. The results show that UVA radiation induces the oxidation of DHICA to indole-5,6-quinone-2-carboxylic acid in eumelanin, which is then cleaved to form a photodegraded, pyrrolic moiety and finally to form free pyrrole-2,3,5-tricarboxylic acid. The possible involvement of superoxide radical and singlet oxygen in the oxidation was suggested. The generation and quenching of singlet oxygen by DHICA-melanin was confirmed by direct measurements of singlet oxygen phosphorescence.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Marina Kikuta
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Shota Koike
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Michal Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Zadlo
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi, Japan
| |
Collapse
|
2
|
Jin Z, Fan H. The modulation of melanin-like materials: methods, characterization and applications. POLYM INT 2016. [DOI: 10.1002/pi.5187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhaoxia Jin
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| | - Hailong Fan
- Department of Chemistry; Renmin University of China; Beijing 100872 People's Republic of China
| |
Collapse
|
3
|
Hyogo R, Nakamura A, Okuda H, Wakamatsu K, Ito S, Sota T. Mid-infrared vibrational spectroscopic characterization of 5,6-dihydroxyindole and eumelanin derived from it. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.10.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
d'Ischia M, Napolitano A, Pezzella A. 5,6‐Dihydroxyindole Chemistry: Unexplored Opportunities Beyond Eumelanin. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100796] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marco d'Ischia
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Alessandra Napolitano
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| | - Alessandro Pezzella
- Department of Organic Chemistry and Biochemistry, University of Naples “Federico II”, Via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
5
|
Capelli L, Crescenzi O, Manini P, Pezzella A, Barone V, d’Ischia M. π-Electron Manipulation of the 5,6-Dihydroxyindole/Quinone System by 3-Alkynylation: Mild Acid-Mediated Entry to (Cross)-Conjugated Scaffolds and Paradigms for Medium-Tunable Chromophores. J Org Chem 2011; 76:4457-66. [DOI: 10.1021/jo200232t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | - Vincenzo Barone
- Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
| | | |
Collapse
|