• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4676582)   Today's Articles (3766)
For: Osińska K, Pecul M, Kudelski A. Circularly polarized component in surface-enhanced Raman spectra. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Number Cited by Other Article(s)
1
Er E, Chow TH, Liz-Marzán LM, Kotov NA. Circular Polarization-Resolved Raman Optical Activity: A Perspective on Chiral Spectroscopies of Vibrational States. ACS NANO 2024;18:12589-12597. [PMID: 38709673 PMCID: PMC11112978 DOI: 10.1021/acsnano.3c13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
2
Sepali C, Lafiosca P, Gómez S, Giovannini T, Cappelli C. Effective fully polarizable QM/MM approaches to compute Raman and Raman Optical Activity spectra in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024;305:123485. [PMID: 37827000 DOI: 10.1016/j.saa.2023.123485] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
3
Zhang W, Ai B, Gu P, Guan Y, Wang Z, Xiao Z, Zhang G. Plasmonic Chiral Metamaterials with Sub-10 nm Nanogaps. ACS NANO 2021;15:17657-17667. [PMID: 34734713 DOI: 10.1021/acsnano.1c05437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
4
Das M, Gangopadhyay D, Šebestík J, Habartová L, Michal P, Kapitán J, Bouř P. Chiral detection by induced surface-enhanced Raman optical activity. Chem Commun (Camb) 2021;57:6388-6391. [PMID: 34085068 DOI: 10.1039/d1cc01504d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
5
Krupová M, Kessler J, Bouř P. Recent Trends in Chiroptical Spectroscopy: Theory and Applications of Vibrational Circular Dichroism and Raman Optical Activity. Chempluschem 2020;85:561-575. [DOI: 10.1002/cplu.202000014] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Indexed: 12/13/2022]
6
Li G, Kessler J, Cheramy J, Wu T, Poopari MR, Bouř P, Xu Y. Transfer and Amplification of Chirality Within the “Ring of Fire” Observed in Resonance Raman Optical Activity Experiments. Angew Chem Int Ed Engl 2019;58:16495-16498. [DOI: 10.1002/anie.201909603] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Indexed: 12/14/2022]
7
Li G, Kessler J, Cheramy J, Wu T, Poopari MR, Bouř P, Xu Y. Transfer and Amplification of Chirality Within the “Ring of Fire” Observed in Resonance Raman Optical Activity Experiments. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
8
Krajczewski J, Kudelski A. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Front Chem 2019;7:410. [PMID: 31214580 PMCID: PMC6558160 DOI: 10.3389/fchem.2019.00410] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/20/2019] [Indexed: 11/25/2022]  Open
9
Kalachyova Y, Guselnikova O, Elashnikov R, Panov I, Žádný J, Církva V, Storch J, Sykora J, Zaruba K, Švorčík V, Lyutakov O. Helicene-SPP-Based Chiral Plasmonic Hybrid Structure: Toward Direct Enantiomers SERS Discrimination. ACS APPLIED MATERIALS & INTERFACES 2019;11:1555-1562. [PMID: 30525385 DOI: 10.1021/acsami.8b15520] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
10
Krajczewski J, Kędziora M, Kołątaj K, Kudelski A. Improved synthesis of concave cubic gold nanoparticles and their applications for Raman analysis of surfaces. RSC Adv 2019;9:18609-18618. [PMID: 35515242 PMCID: PMC9064795 DOI: 10.1039/c9ra03012c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 12/20/2022]  Open
11
Zhao W, Wang RY, Wei H, Li J, Ji Y, Jiang X, Wu X, Zhang X. Recognition of chiral zwitterionic interactions at nanoscale interfaces by chiroplasmonic nanosensors. Phys Chem Chem Phys 2018;19:21401-21406. [PMID: 28783186 DOI: 10.1039/c7cp03004e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
12
Krajczewski J, Kołątaj K, Kudelski A. Plasmonic nanoparticles in chemical analysis. RSC Adv 2017. [DOI: 10.1039/c7ra01034f] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]  Open
13
Šebestík J, Teplý F, Císařová I, Vávra J, Koval D, Bouř P. Intense chirality induction in nitrile solvents by a helquat dye monitored by near resonance Raman scattering. Chem Commun (Camb) 2016;52:6257-60. [PMID: 27087537 DOI: 10.1039/c6cc01606e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
14
Parchaňský V, Kapitán J, Bouř P. Inspecting chiral molecules by Raman optical activity spectroscopy. RSC Adv 2014. [DOI: 10.1039/c4ra10416a] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]  Open
15
Šebestík J, Bouř P. Observation of Paramagnetic Raman Optical Activity of Nitrogen Dioxide. Angew Chem Int Ed Engl 2014;53:9236-9. [DOI: 10.1002/anie.201403887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Indexed: 11/09/2022]
16
Šebestík J, Bouř P. Observation of Paramagnetic Raman Optical Activity of Nitrogen Dioxide. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
17
Chulhai DV, Jensen L. Simulating Surface-Enhanced Raman Optical Activity Using Atomistic Electrodynamics-Quantum Mechanical Models. J Phys Chem A 2014;118:9069-79. [DOI: 10.1021/jp502107f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
18
Nieto-Ortega B, Hierrezuelo JM, Carnero Ruiz C, López Navarrete JT, Casado J, Ramírez FJ. Unfolding Pathway of a Globular Protein by Surfactants Monitored with Raman Optical Activity. J Phys Chem Lett 2014;5:8-13. [PMID: 26276173 DOI: 10.1021/jz402291s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
19
Novák V, Šebestík J, Bouř P. Theoretical Modeling of the Surface-Enhanced Raman Optical Activity. J Chem Theory Comput 2012;8:1714-20. [PMID: 26593665 DOI: 10.1021/ct300150g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
20
Kamiński M, Kudelski A, Pecul M. Vibrational Optical Activity of Cysteine in Aqueous Solution: A Comparison of Theoretical and Experimental Spectra. J Phys Chem B 2012;116:4976-90. [DOI: 10.1021/jp300699e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
21
Hopmann KH, Ruud K, Pecul M, Kudelski A, Dračínský M, Bouř P. Explicit versus Implicit Solvent Modeling of Raman Optical Activity Spectra. J Phys Chem B 2011;115:4128-37. [DOI: 10.1021/jp110662w] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
22
Larmour IA, Graham D. Surface enhanced optical spectroscopies for bioanalysis. Analyst 2011;136:3831-53. [DOI: 10.1039/c1an15452d] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
23
Pour SO, Bell SEJ, Blanch EW. Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA). Chem Commun (Camb) 2011;47:4754-6. [DOI: 10.1039/c0cc05284a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA