1
|
Vandaele E, Mališ M, Luber S. A Local Diabatisation Method for Two-State Adiabatic Conical Intersections. J Chem Theory Comput 2024; 20:856-872. [PMID: 38174710 DOI: 10.1021/acs.jctc.3c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A methodology to locally characterize conical intersections (CIs) between two adiabatic electronic states for which no nonadiabatic coupling (NAC) vectors are available is presented. Based on the Hessian and gradient at the CI, the branching space coordinates are identified. The potential energy surface around the CI in the branching space is expressed in the diabatic representation, from which the NAC vectors can be calculated in a wave-function-free, energy-based approach. To demonstrate the universality of the developed methodology, the minimum-energy CI (MECI) between the first (S1) and second (S2) singlet excited states of formamide is investigated at the state-averaged complete active space self-consistent field (SA-CASSCF) and extended multistate complete active space second-order perturbation theory (XMS-CASPT2) levels of theory. In addition, the asymmetrical MECI between the ground state (S0) and S1 of cyclopropanone is evaluated using SA-CASSCF, as well as (ME)CIs between the S1 and S2 states of benzene using SA-CASSCF and time-dependent density functional theory (TDDFT). Finally, a CI between the S1 and S2 excited states of thiophene was analyzed using TDDFT.
Collapse
Affiliation(s)
- Eva Vandaele
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Momir Mališ
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
2
|
Clennan EL. Aromatic Endoperoxides. Photochem Photobiol 2022; 99:204-220. [PMID: 35837947 DOI: 10.1111/php.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022]
Abstract
The fundamental aspects of aromatic endoperoxide chemistry are reviewed including their synthesis and reactions. The discussion will focus on factors that will both enhance and prevent the formation of aromatic endoperoxides, and on structural features that will provide control over their ability to release singlet oxygen. This approach recognizes the dual use of aromatic hydrocarbons as both precursors of endoperoxides and as valuable materials for incorporation in electronic and photonic devices. Improvement of the existing methods and development of new methods for the synthesis of endoperoxides is necessary as result of the demand to improve existing and to create new applications for these valuable materials. On the other hand, prevention of endoperoxide formation is crucial to inhibit irreversible oxidative degradation of aromatic hydrocarbons and to extend their lifetimes as useful organic semiconductors.
Collapse
Affiliation(s)
- Edward L Clennan
- Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
3
|
Shen L, Xie B, Li Z, Liu L, Cui G, Fang WH. Role of Multistate Intersections in Photochemistry. J Phys Chem Lett 2020; 11:8490-8501. [PMID: 32787313 DOI: 10.1021/acs.jpclett.0c01637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It has been generally accepted that the intersection of potential energy surfaces can facilitate nonadiabatic transitions and plays a crucial role in photochemistry. Although most previous studies have focused on the conical intersection of two electronic states, multistate intersections are common in polyatomic molecules, and their key roles in photochemistry have been uncovered by electronic structure calculations and nonadiabatic dynamics simulations. In this Perspective, the algorithms for searching two- or three-state intersections are first examined with an emphasis on the latest development in a general algorithm for location of multistate intersections. Then, we focus on intersystem crossing (ISC) that occurs in the region of multistate intersection, paying more attention to how the state-specific spin-orbit coupling interaction influences nonadiabatic ISC processes. Finally, the interweaving of nonadiabatic dynamics simulation and electronic structure calculation has been recognized as a correct way to ascertain the vital roles of multistate intersections in photochemical reactions.
Collapse
Affiliation(s)
- Lin Shen
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, P.R. China
| | - Ziwen Li
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Lihong Liu
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
4
|
Kowalewski M, Fingerhut BP, Dorfman KE, Bennett K, Mukamel S. Simulating Coherent Multidimensional Spectroscopy of Nonadiabatic Molecular Processes: From the Infrared to the X-ray Regime. Chem Rev 2017; 117:12165-12226. [DOI: 10.1021/acs.chemrev.7b00081] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Markus Kowalewski
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Benjamin P. Fingerhut
- Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, D-12489 Berlin, Germany
| | - Konstantin E. Dorfman
- State
Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Kochise Bennett
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Shaul Mukamel
- Department
of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
5
|
Boggio-Pasqua M, Heully JL. Thermolysis biradical mechanisms in endoperoxides: A challenge for density functional theory? Theor Chem Acc 2015. [DOI: 10.1007/s00214-015-1766-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Martínez-Fernández L, González-Vázquez J, González L, Corral I. Time-resolved insight into the photosensitized generation of singlet oxygen in endoperoxides. J Chem Theory Comput 2015; 11:406-14. [PMID: 25688180 PMCID: PMC4325559 DOI: 10.1021/ct500909a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/28/2022]
Abstract
A synergistic approach combining high-level multiconfigurational static calculations and full-dimensional ab initio surface hopping dynamics has been employed to gain insight into the photochemistry of endoperoxides. Electronic excitation of endoperoxides triggers two competing pathways, cycloreversion and O–O homolysis, that result in the generation of singlet oxygen and oxygen diradical rearrangement products. Our results reveal that cycloreversion or the rupture of the two C–O bonds occurs via an asynchronous mechanism that can lead to the population of a ground-state intermediate showing a single C–O bond. Furthermore, singlet oxygen is directly generated in its most stable excited electronic state 1Δg. The triplet states do not intervene in this mechanism, as opposed to the O–O homolysis where the exchange of population between the singlet and triplet manifolds is remarkable. In line with recent experiments performed on the larger anthracene-9,10-endoperoxide, upon excitation to the spectroscopic ππ* electronic states, the primary photoreactive pathway that governs deactivation of endoperoxides is O–O homolysis with a quantum yield of 65%.
Collapse
Affiliation(s)
| | - Jesús González-Vázquez
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - Leticia González
- Institute
of Theoretical Chemistry, University of
Vienna, Währingerstrasse
17, 1090 Vienna, Austria
| | - Inés Corral
- Departamento
de Química, Universidad Autónoma
de Madrid, 28049 Cantoblanco, Madrid, Spain
| |
Collapse
|
7
|
Blancafort L. Photochemistry and photophysics at extended seams of conical intersection. Chemphyschem 2014; 15:3166-81. [PMID: 25157686 DOI: 10.1002/cphc.201402359] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Indexed: 11/07/2022]
Abstract
The role of extended seams of conical intersection in excited-state mechanisms is reviewed. Seams are crossings of the potential energy surface in many dimensions where the decay from the excited to the ground state can occur, and the extended seam is composed of different segments lying along a reaction coordinate. Every segment is associated with a different primary photoproduct, which gives rise to competing pathways. This idea is first illustrated for fulvene and ethylene, and then it is used to explain more complex cases such as the dependence of the isomerisation of retinal chromophore isomers on the protein environment, the dependence of the efficiency of the azobenzene photochemical switch on the wavelength of irradiation and the direction of the isomerisation, and the coexistence of different mechanisms in the photo-induced Wolff rearrangement of diazonaphthoquinone. The role of extended seams in the photophysics of the DNA nucleobases and the relationship between two-state seams and three-state crossings is also discussed. As an outlook, the design of optical control strategies based on the passage of the excited molecule through the seam is considered, and it is shown how the excited-state lifetime of fulvene can be modulated by shaping the energy of the seam.
Collapse
Affiliation(s)
- Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17071 Girona (Spain).
| |
Collapse
|
8
|
Martínez-Fernández L, Corral I, Granucci G, Persico M. Competing ultrafast intersystem crossing and internal conversion: a time resolved picture for the deactivation of 6-thioguanine. Chem Sci 2014. [DOI: 10.1039/c3sc52856a] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
9
|
Assmann M, Worth GA, González L. 9D nonadiabatic quantum dynamics through a four-state conical intersection: Investigating the homolysis of the O–O bond in anthracene-9,10-endoperoxide. J Chem Phys 2012; 137:22A524. [DOI: 10.1063/1.4742908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Kupfer S, Pérez-Hernández G, González L. Singlet oxygen generation versus O–O homolysis in phenyl-substituted anthracene endoperoxides investigated by RASPT2, CASPT2, CC2, and TD-DFT methods. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1295-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
|
12
|
González L, Escudero D, Serrano-Andrés L. Progress and Challenges in the Calculation of Electronic Excited States. Chemphyschem 2011; 13:28-51. [DOI: 10.1002/cphc.201100200] [Citation(s) in RCA: 310] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 08/05/2011] [Indexed: 11/09/2022]
|