1
|
Mycosporine-like amino acids: Algal metabolites shaping the safety and sustainability profiles of commercial sunscreens. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Fois E, Oriani M, Tabacchi G. A post-HF approach to the sunscreen octyl methoxycinnamate. J Chem Phys 2021; 154:144304. [PMID: 33858162 DOI: 10.1063/5.0046118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Octyl methoxycinnamate (2-ethylhexyl 4-methoxycinnamate, OMC) is a commercial sunscreen known as octinoxate with excellent UVB filter properties. However, it is known to undergo a series of photodegradation processes that decrease its effectiveness as a UVB filter. In particular, the trans (E) form-which is considered so far as the most stable isomer-converts to the cis (Z) form under the effect of light. In this work, by using post-Hartree-Fock approaches [CCSD, CCSD(t), and CCSD + T(CCSD)] on ground state OMC geometries optimized at the MP2 level, we show that the cis and trans forms of the gas-phase OMC molecule have comparable stability. Test calculations on the same structures with a series of dispersion-corrected density functional theory-based approaches including the B2PLYP double hybrid predict the trans structures to be energetically favored, missing the subtle stabilization of cis-OMC. Our results suggest that the cis form is stabilized by intra-molecular dispersion interactions, leading to a folded more compact structure than the trans isomer.
Collapse
Affiliation(s)
- Ettore Fois
- Department of Science and High Technology, University of Insubria and INSTM UdR Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Mario Oriani
- Department of Science and High Technology, University of Insubria and INSTM UdR Insubria, Via Valleggio 11, I-22100 Como, Italy
| | - Gloria Tabacchi
- Department of Science and High Technology, University of Insubria and INSTM UdR Insubria, Via Valleggio 11, I-22100 Como, Italy
| |
Collapse
|
3
|
Santiago PH, Tiago FS, Castro MS, Souza PE, Martins JB, Gatto CC. DFT analysis, spectroscopic study and biological activity of a newly synthesized benzoylhydrazone binuclear Cu(II) complex. J Inorg Biochem 2020; 204:110949. [DOI: 10.1016/j.jinorgbio.2019.110949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 01/29/2023]
|
4
|
Duarte J, Almeida I, Costa M, Da Silva E, Faria J, Sousa Lobo J, Costa P, Scalia S. Alginate microparticles as carriers for the UV filter 2‐ethylhexyl 4‐methoxycinnamate: Influence on photostability. Int J Cosmet Sci 2019; 41:585-593. [DOI: 10.1111/ics.12578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- J. Duarte
- Faculty of Pharmacy Department of Drug Sciences Laboratory of Pharmaceutical Technology University of Porto Rua Jorge Viterbo Ferreira, 2284050‐313Porto Portugal
| | - I.F. Almeida
- UCIBIO/REQUIMTE MedTech‐Laboratory of Pharmaceutical Technology Department of Drug Sciences Laboratory of Pharmaceutical Technology Department of Drug Sciences Faculty of Pharmacy University of Porto Rua Jorge Viterbo Ferreira, 2284050‐313Porto Portugal
| | - M. Costa
- Faculty of Pharmacy Department of Drug Sciences Laboratory of Pharmaceutical Technology University of Porto Rua Jorge Viterbo Ferreira, 2284050‐313Porto Portugal
| | - E.S. Da Silva
- Faculty of Engineering Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE–LCM) University of Porto Rua Dr. Roberto Frias4200‐465Porto Portugal
| | - J.L. Faria
- Faculty of Engineering Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials (LSRE–LCM) University of Porto Rua Dr. Roberto Frias4200‐465Porto Portugal
| | - J.M. Sousa Lobo
- UCIBIO/REQUIMTE MedTech‐Laboratory of Pharmaceutical Technology Department of Drug Sciences Laboratory of Pharmaceutical Technology Department of Drug Sciences Faculty of Pharmacy University of Porto Rua Jorge Viterbo Ferreira, 2284050‐313Porto Portugal
| | - P.C. Costa
- UCIBIO/REQUIMTE MedTech‐Laboratory of Pharmaceutical Technology Department of Drug Sciences Laboratory of Pharmaceutical Technology Department of Drug Sciences Faculty of Pharmacy University of Porto Rua Jorge Viterbo Ferreira, 2284050‐313Porto Portugal
| | - S. Scalia
- Department of Life Sciences and Biotechnology University of Ferrara via Luigi Borsari46‐44121Ferrara Italy
| |
Collapse
|
5
|
Popiół J, Gunia-Krzyżak A, Piska K, Żelaszczyk D, Koczurkiewicz P, Słoczyńska K, Wójcik-Pszczoła K, Krupa A, Kryczyk-Poprawa A, Żesławska E, Nitek W, Żmudzki P, Marona H, Pękala E. Discovery of Novel UV-Filters with Favorable Safety Profiles in the 5-Arylideneimidazolidine-2,4-dione Derivatives Group. Molecules 2019; 24:E2321. [PMID: 31238526 PMCID: PMC6630718 DOI: 10.3390/molecules24122321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/15/2019] [Accepted: 06/19/2019] [Indexed: 11/17/2022] Open
Abstract
Effective protection from the harmful effects of UV radiation may be achieved by using sunscreens containing organic or inorganic UV filters. The number of currently available UV filters is limited and some of the allowed molecules possess limitations such as systemic absorption, endocrine disruption properties, contact and photocontact allergy induction, and low photostability. In the search for new organic UV filters we designed and synthesized a series consisting of 5-benzylidene and 5-(3-phenylprop-2-en-1-ylidene)imidazolidine-2,4-dione (hydantoin) derivatives. The photoprotective activity of the tested compounds was confirmed in methanol solutions and macrogol formulations. The most promising compounds possessed similar UV protection parameter values as selected commercially available UV filters. The compound diethyl 2,2'-((Z)-4-((E)-3-(4-methoxyphenyl)allylidene)-2,5-dioxoimidazolidine-1,3-diyl)diacetate (4g) was characterized as an especially efficient UVA photoprotective agent with a UVA PF of 6.83 ± 0.05 and favorable photostability. Diethyl 2,2'-((Z)-4-(4-methoxybenzylidene)-2,5-dioxo- imidazolidine-1,3-diyl)diacetate (3b) was the most promising UVB-filter, with a SPFin vitro of 3.07 ± 0.04 and very good solubility and photostability. The main photodegradation products were geometric isomers of the parent compounds. These compounds were also shown to be non-cytotoxic at concentrations up to 50 µM when tested on three types of human skin cells and possess no estrogenic activity, according to the results of a MCF-7 breast cancer model.
Collapse
Affiliation(s)
- Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Paulina Koczurkiewicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Katarzyna Wójcik-Pszczoła
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| | - Anna Krupa
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Agata Kryczyk-Poprawa
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Ewa Żesławska
- Department of Chemistry, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084 Krakow, Poland;
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland;
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (D.Z.); (H.M.)
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (K.P.); (P.K.); (K.S.); (K.W.-P.); (E.P.)
| |
Collapse
|
6
|
Molecular modeling for the investigation of UV absorbers for sunscreens: Triazine and benzotriazole derivatives. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Studziński W, Gackowska A, Przybyłek M, Gaca J. Studies on the formation of formaldehyde during 2-ethylhexyl 4-(dimethylamino)benzoate demethylation in the presence of reactive oxygen and chlorine species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8049-8061. [PMID: 28133704 PMCID: PMC5384958 DOI: 10.1007/s11356-017-8477-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
In order to protect the skin from UV radiation, personal care products (PCPS) often contain chemical UV-filters. These compounds can enter the environment causing serious consequences on the water ecosystems. The aim of this study was to examine, the effect of different factors, such as UV light, the presence of NaOCl and H2O2 on the formaldehyde formation during popular UV filter, 2-ethylhexyl 4-(dimethylamino)benzoate (ODPABA) demethylation. The concentration of formaldehyde was determined by VIS spectrophotometry after derivatization. The reaction mixtures were qualitatively analyzed using GC/MS chromatography. The highest concentration of formaldehyde was observed in the case of ODPABA/H2O2/UV reaction mixture. In order to describe two types of demethylation mechanisms, namely, radical and ionic, the experimental results were enriched with Fukui function analysis and thermodynamic calculations. In the case of non-irradiated system containing ODPABA and NaOCl, demethylation reaction probably proceeds via ionic mechanism. As it was established, amino nitrogen atom in the ODPABA molecule is the most susceptible site for the HOCl electrophilic attack, which is the first step of ionic demethylation mechanism. In the case of irradiated mixtures, the reaction is probably radical in nature. The results of thermodynamic calculations showed that abstraction of the hydrogen from N(CH3)2 group is more probable than from 2-ethylhexyl moiety, which indicates higher susceptibility of N(CH3)2 to the oxidation.
Collapse
Affiliation(s)
- Waldemar Studziński
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Alicja Gackowska
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Maciej Przybyłek
- Department of Physical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.
| | - Jerzy Gaca
- Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| |
Collapse
|
8
|
Tiago FS, Santiago PH, Amaral MM, Martins JB, Gatto CC. New Cu(II) complex with acetylpyridine benzoyl hydrazone: experimental and theoretical analysis. J COORD CHEM 2015. [DOI: 10.1080/00958972.2015.1105367] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fernanda S. Tiago
- Laboratory of Computational Chemistry, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Pedro H.O. Santiago
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Marília M.P. Amaral
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| | - João B.L. Martins
- Laboratory of Computational Chemistry, University of Brasília (IQ-UnB), Brasília, Brazil
| | - Claudia C. Gatto
- Laboratory of Inorganic Synthesis and Crystallography, University of Brasília (IQ-UnB), Brasília, Brazil
| |
Collapse
|
9
|
Durães JA, da Silva Filho DA, Ceschin AM, Sales MJA, Martins JBL. Investigation of the torsional barrier of EDOT using molecular mechanics and DFT methods. J Mol Model 2014; 20:2405. [PMID: 25116151 DOI: 10.1007/s00894-014-2405-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022]
Abstract
When heterocyclic monomers are polymerized by electrochemical or chemical methods, they form fully conjugated polymers which have a wide range of applications due to their outstanding electronic properties. Among this class of compounds, thiophene derivatives are widely used due to their chemical stability and synthesis flexibility. With the goal to investigate the torsion barrier of polymer chains, a few units of 3,4-ethylenedioxythiophene (EDOT) were chosen and submitted to molecular mechanics (MM), density functional theory (DFT) and coupled cluster CCSD(T) calculations. This study helps to understand the performance and transferability of force fields used in molecular mechanics and molecular dynamics simulations often used to describe structure-property relationships of those systems. Determination of inter-ring torsion angle was performed in a comparative study using both force field, DFT and CCSD(T) methods. A good agreement was noticed between MM and QC results and highlights the importance of the description of the interactions involving the oxygen atoms present in the structure of EDOT. These observations are related to the α,α-coupling that occurs between the monomer units and yields a linear polymer. DFT HOMO and LUMO orbitals were also presented. Finally, UV-vis spectra of EDOT units were obtained using several levels of theory by means of time-dependent DFT calculations (TD-DFT).
Collapse
Affiliation(s)
- Jussara A Durães
- Institute of Chemistry, University of Brasília, P.O. Box 04478, 70904-970, Brasília, Brazil
| | | | | | | | | |
Collapse
|
10
|
Structure and electronic properties of azadirachtin. J Mol Model 2014; 20:2084. [PMID: 24509732 DOI: 10.1007/s00894-014-2084-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 11/08/2013] [Indexed: 10/25/2022]
Abstract
We performed a combined DFT and Monte Carlo (13)C NMR chemical-shift study of azadirachtin A, a triterpenoid that acts as a natural insect antifeedant. A conformational search using a Monte Carlo technique based on the RM1 semiempirical method was carried out in order to establish its preferred structure. The B3LYP/6-311++G(d,p), wB97XD/6-311++G(d,p), M06/6-311++G(d,p), M06-2X/6-311++G(d,p), and CAM-B3LYP/6-311++G(d,p) levels of theory were used to predict NMR chemical shifts. A Monte Carlo population-weighted average spectrum was produced based on the predicted Boltzmann contributions. In general, good agreement between experimental and theoretical data was obtained using both methods, and the (13)C NMR chemical shifts were predicted highly accurately. The geometry was optimized at the semiempirical level and used to calculate the NMR chemical shifts at the DFT level, and these shifts showed only minor deviations from those obtained following structural optimization at the DFT level, and incurred a much lower computational cost. The theoretical ultraviolet spectrum showed a maximum absorption peak that was mainly contributed by the tiglate group.
Collapse
|
11
|
Oguchi-Fujiyama N, Miyazawa K, Kikuchi A, Yagi M. Photophysical properties of dioctyl 4-methoxybenzylidenemalonate: UV-B absorber. Photochem Photobiol Sci 2012; 11:1528-35. [DOI: 10.1039/c2pp25101a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|