1
|
Honegger P, Steinhauser O, Schröder C. Collective Spectroscopy of Solvation Phenomena: Conflicts, Challenges, and Opportunities. J Phys Chem Lett 2023; 14:609-618. [PMID: 36634000 DOI: 10.1021/acs.jpclett.2c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Different spectroscopy types reveal different aspects of molecular processes in soft matter. In particular, collective observables can provide insights into intermolecular correlations invisible to the more popular single-particle methods. In this perspective we feature the dielectric relaxation spectroscopy (DRS) with an emphasis on the proper interpretation of this complex observable aided by computational spectroscopy. While we focus on the history and recent advances of DRS in the fields of biomolecular hydration and nanoconfinement, the discussion transcends this particular field and provides a guide for how collective spectroscopy types supported by computational decomposition can be employed to further our understanding of soft matter phenomena.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna,Faculty of Chemistry, Department of Computational Biological Chemistry, Wien, 1090, Austria
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, BostonMassachusetts02115, United States
| | - Othmar Steinhauser
- University of Vienna,Faculty of Chemistry, Department of Computational Biological Chemistry, Wien, 1090, Austria
| | - Christian Schröder
- University of Vienna,Faculty of Chemistry, Department of Computational Biological Chemistry, Wien, 1090, Austria
| |
Collapse
|
2
|
Faccio C, Benzi M, Zanetti-Polzi L, Daidone I. Low- and high-density forms of liquid water revealed by a new medium-range order descriptor. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Mora AK, Singh PK, Nadkarni SA, Nath S. How mobile is the water in the reverse micelles? A 2DIR study with an ultrasmall IR probe. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Honegger P, Heid E, Schröder C, Steinhauser O. Dielectric spectroscopy and time dependent Stokes shift: two faces of the same coin? Phys Chem Chem Phys 2020; 22:18388-18399. [DOI: 10.1039/d0cp02840a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different types of spectroscopy capture different aspects of dynamics and different ranges of intermolecular contributions.
Collapse
Affiliation(s)
- Philipp Honegger
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Esther Heid
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Christian Schröder
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| | - Othmar Steinhauser
- University of Vienna
- Faculty of Chemistry
- Department of Computational Biological Chemistry
- 1090 Vienna
- Austria
| |
Collapse
|
5
|
Caduff A, Ben Ishai P, Feldman Y. Continuous noninvasive glucose monitoring; water as a relevant marker of glucose uptake in vivo. Biophys Rev 2019; 11:1017-1035. [PMID: 31741172 DOI: 10.1007/s12551-019-00601-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/13/2019] [Indexed: 01/22/2023] Open
Abstract
With diabetes set to become the number 3 killer in the Western hemisphere and proportionally growing in other parts of the world, the subject of noninvasive monitoring of glucose dynamics in blood remains a "hot" topic, with the involvement of many groups worldwide. There is a plethora of techniques involved in this academic push, but the so-called multisensor system with an impedance-based core seems to feature increasingly strongly. However, the symmetrical structure of the glucose molecule and its shielding by the smaller dipoles of water would suggest that this option should be less enticing. Yet there is enough phenomenological evidence to suggest that impedance-based methods are truly sensitive to the biophysical effects of glucose variations in the blood. We have been trying to answer this very fundamental conundrum: "Why is impedance or dielectric spectroscopy sensitive to glucose concentration changes in the blood and why can this be done over a very broad frequency band, including microwaves?" The vistas for medical diagnostics are very enticing. There have been a significant number of papers published that look seriously at this problem. In this review, we want to summarize this body of research and the underlying mechanisms and propose a perspective toward utilizing the phenomena. It is our impression that the current world view on the dielectric response of glucose in solution, as outlined below, will support the further evolution and implementation toward practical noninvasive glucose monitoring solutions.
Collapse
Affiliation(s)
- Andreas Caduff
- Applied Physics Department and the Center for Electromagnetic Research and Characterization, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Paul Ben Ishai
- Department of Physics, Ariel University, 40700, Ariel, Israel
| | - Yuri Feldman
- Applied Physics Department and the Center for Electromagnetic Research and Characterization, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
6
|
Low temperature dependence of protein-water interactions on barstar surface: A nano-scale modelling. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Zavadlav J, Sablić J, Podgornik R, Praprotnik M. Open-Boundary Molecular Dynamics of a DNA Molecule in a Hybrid Explicit/Implicit Salt Solution. Biophys J 2018; 114:2352-2362. [PMID: 29650370 PMCID: PMC6129463 DOI: 10.1016/j.bpj.2018.02.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 12/24/2022] Open
Abstract
The composition and electrolyte concentration of the aqueous bathing environment have important consequences for many biological processes and can profoundly affect the behavior of biomolecules. Nevertheless, because of computational limitations, many molecular simulations of biophysical systems can be performed only at specific ionic conditions: either at nominally zero salt concentration, i.e., including only counterions enforcing the system's electroneutrality, or at excessive salt concentrations. Here, we introduce an efficient molecular dynamics simulation approach for an atomistic DNA molecule at realistic physiological ionic conditions. The simulations are performed by employing the open-boundary molecular dynamics method that allows for simulation of open systems that can exchange mass and linear momentum with the environment. In our open-boundary molecular dynamics approach, the computational burden is drastically alleviated by embedding the DNA molecule in a mixed explicit/implicit salt-bathing solution. In the explicit domain, the water molecules and ions are both overtly present in the system, whereas in the implicit water domain, only the ions are explicitly present and the water is described as a continuous dielectric medium. Water molecules are inserted and deleted into/from the system in the intermediate buffer domain that acts as a water reservoir to the explicit domain, with both water molecules and ions free to enter or leave the explicit domain. Our approach is general and allows for efficient molecular simulations of biomolecules solvated in bathing salt solutions at any ionic strength condition.
Collapse
Affiliation(s)
- Julija Zavadlav
- Computational Science & Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Jurij Sablić
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia
| | - Rudolf Podgornik
- Theoretical Physics Department, J. Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Praprotnik
- Laboratory for Molecular Modeling, National Institute of Chemistry, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Zavadlav J, Bevc S, Praprotnik M. Adaptive resolution simulations of biomolecular systems. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:821-835. [PMID: 28905203 DOI: 10.1007/s00249-017-1248-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/12/2017] [Accepted: 08/15/2017] [Indexed: 10/18/2022]
Abstract
In this review article, we discuss and analyze some recently developed hybrid atomistic-mesoscopic solvent models for multiscale biomolecular simulations. We focus on the biomolecular applications of the adaptive resolution scheme (AdResS), which allows solvent molecules to change their resolution back and forth between atomistic and coarse-grained representations according to their positions in the system. First, we discuss coupling of atomistic and coarse-grained models of salt solution using a 1-to-1 molecular mapping-i.e., one coarse-grained bead represents one water molecule-for development of a multiscale salt solution model. In order to make use of coarse-grained molecular models that are compatible with the MARTINI force field, one has to resort to a supramolecular mapping, in particular to a 4-to-1 mapping, where four water molecules are represented with one coarse-grained bead. To this end, bundled atomistic water models are employed, i.e., the relative movement of water molecules that are mapped to the same coarse-grained bead is restricted by employing harmonic springs. Supramolecular coupling has recently also been extended to polarizable coarse-grained water models with explicit charges. Since these coarse-grained models consist of several interaction sites, orientational degrees of freedom of the atomistic and coarse-grained representations are coupled via a harmonic energy penalty term. The latter aligns the dipole moments of both representations. The reviewed multiscale solvent models are ready to be used in biomolecular simulations, as illustrated in a few examples.
Collapse
Affiliation(s)
- Julija Zavadlav
- Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.,Chair of Computational Science, ETH Zurich, Clausiusstrasse 33, 8092, Zurich, Switzerland
| | - Staš Bevc
- Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Matej Praprotnik
- Department of Molecular Modeling, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia. .,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Gavrilov Y, Leuchter JD, Levy Y. On the coupling between the dynamics of protein and water. Phys Chem Chem Phys 2017; 19:8243-8257. [DOI: 10.1039/c6cp07669f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The solvation entropy of flexible protein regions is higher than that of rigid regions and contributes differently to the overall thermodynamic stability.
Collapse
Affiliation(s)
- Yulian Gavrilov
- Department of Structural Biology
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Jessica D. Leuchter
- Department of Structural Biology
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| | - Yaakov Levy
- Department of Structural Biology
- Weizmann Institute of Science
- Rehovot 76100
- Israel
| |
Collapse
|
10
|
Braun D, Schmollngruber M, Steinhauser O. Rotational dynamics of water molecules near biological surfaces with implications for nuclear quadrupole relaxation. Phys Chem Chem Phys 2016; 18:24620-30. [PMID: 27546227 DOI: 10.1039/c6cp04000d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Based on Molecular Dynamics simulations of two different systems, the protein ubiquitin dissolved in water and an AOT reverse micelle, we present a broad analysis of the single particle rotational dynamics of water. A comprehensive connection to NQR, which is a prominent experimental method in this field, is developed, based on a reformulation of its theoretical framework. Interpretation of experimental NQR results requires a model which usually assumes that the NQR experiences retardation only in the first hydration shell. Indeed, the present study shows that this first-shell model is correct. Moreover, previous experimental retardation factors are quantitatively reproduced. All of this is seemingly contradicted by results of other methods, e.g., dielectric spectroscopy, responsible for a long-standing debate in this field. Our detailed analysis shows that NQR omits important information contained in overall water dynamics, most notably, the retardation of the water dipole axis in the electric field exerted by a biological surface.
Collapse
Affiliation(s)
- Daniel Braun
- University of Vienna, Department of Computational Biological Chemistry, Währinger Straße 17, 1090 Vienna, Austria.
| | | | | |
Collapse
|
11
|
Galano-Frutos JJ, Morón MC, Sancho J. The mechanism of water/ion exchange at a protein surface: a weakly bound chloride in Helicobacter pylori apoflavodoxin. Phys Chem Chem Phys 2016; 17:28635-46. [PMID: 26443502 DOI: 10.1039/c5cp04504e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binding/unbinding of small ligands, such as ions, to/from proteins influences biochemical processes such as protein folding, enzyme catalysis or protein/ligand recognition. We have investigated the mechanism of chloride/water exchange at a protein surface (that of the apoflavodoxin from Helicobacter pylori) using classical all-atom molecular dynamics simulations. They reveal a variety of chloride exit routes and residence times; the latter is related to specific coordination modes of the anion. The role of solvent molecules in the mechanism of chloride unbinding has been studied in detail. We see no temporary increase in chloride coordination along the release process. Instead, the coordination of new water molecules takes place in most cases after the chloride/protein atom release event has begun. Moreover, the distribution function of water entrance events into the first chloride solvation shell peaks after chloride protein atom dissociation events. All these observations together seem to indicate that water molecules simply fill the vacancies left by the previously coordinating protein residues. We thus propose a step-by-step dissociation pathway in which protein/chloride interactions gradually break down before new water molecules progressively fill the vacant positions left by protein atoms. As observed for other systems, water molecules associated with bound chloride or with protein atoms have longer residence times than those bound to the free anion. The implications of the exchange mechanism proposed for the binding of the FMN (Flavin Mononucleotide) protein cofactor are discussed.
Collapse
Affiliation(s)
- Juan J Galano-Frutos
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain. and Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC). Edificio I + D, Mariano Esquillor, 50018, Zaragoza, Spain
| | - M Carmen Morón
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain and Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Javier Sancho
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain. and Biocomputation and Complex Systems Physics Institute (BIFI), Joint Unit BIFI-IQFR (CSIC). Edificio I + D, Mariano Esquillor, 50018, Zaragoza, Spain
| |
Collapse
|
12
|
Zavadlav J, Podgornik R, Praprotnik M. Adaptive Resolution Simulation of a DNA Molecule in Salt Solution. J Chem Theory Comput 2015; 11:5035-44. [DOI: 10.1021/acs.jctc.5b00596] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julija Zavadlav
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Hajdrihova
19, SI-1001 Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department
of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
- Theoretical
Physics Department, J. Stefan Institute, Jamova c. 39, SI-1000 Ljubljana, Slovenia
| | - Matej Praprotnik
- Laboratory
for Molecular Modeling, National Institute of Chemistry, Hajdrihova
19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
13
|
Choudhary A, Chandra A. Spatial and Orientational Structure of the Hydration Shell of Benzene in Sub- and Supercritical Water. J Phys Chem B 2015; 119:8600-12. [DOI: 10.1021/acs.jpcb.5b03371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ashu Choudhary
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India 208016
| | - Amalendu Chandra
- Department
of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India 208016
| |
Collapse
|
14
|
Dhabal D, Singh M, Wikfeldt KT, Chakravarty C. Triplet correlation functions in liquid water. J Chem Phys 2015; 141:174504. [PMID: 25381528 DOI: 10.1063/1.4898755] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O-O-O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O-O-O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.
Collapse
Affiliation(s)
- Debdas Dhabal
- Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016, India
| | - Murari Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Charusita Chakravarty
- Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi 110016, India
| |
Collapse
|
15
|
Ben Ishai P, Tripathi SR, Kawase K, Puzenko A, Feldman Y. What is the primary mover of water dynamics? Phys Chem Chem Phys 2015; 17:15428-34. [DOI: 10.1039/c5cp01871d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present evidence that the microscopic origin of both the excess wing and the main relaxation process of pure water is the same.
Collapse
Affiliation(s)
- P. Ben Ishai
- Department of Applied Physics
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
- Graduate School of Engineering
| | - S. R. Tripathi
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - K. Kawase
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - A. Puzenko
- Department of Applied Physics
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Yu. Feldman
- Department of Applied Physics
- The Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| |
Collapse
|
16
|
Sinha SK, Jana M, Chakraborty K, Bandyopadhyay S. In silico studies of the properties of water hydrating a small protein. J Chem Phys 2014; 141:22D502. [DOI: 10.1063/1.4895533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Feldman Y, Puzenko A, Ben Ishai P, Gutina Greenbaum A. The dielectric response of interfacial water—from the ordered structures to the single hydrated shell. Colloid Polym Sci 2014. [DOI: 10.1007/s00396-014-3296-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Ksenofontova OI. Investigation of conformational mobility of insulin superfamily peptides: Use of SPC/E and TIP4P water models. Mol Biol 2014. [DOI: 10.1134/s0026893314030121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Chatterjee A, Maity B, Seth D. Influence of double confinement on photophysics of 7-(diethylamino)coumarin-3-carboxylic acid in water/AOT/isooctane reverse micelles. RSC Adv 2014. [DOI: 10.1039/c4ra00965g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Abstract
Electron transfer between redox proteins participating in energy chains of biology is required to proceed with high energetic efficiency, minimizing losses of redox energy to heat. Within the standard models of electron transfer, this requirement, combined with the need for unidirectional (preferably activationless) transitions, is translated into the need to minimize the reorganization energy of electron transfer. This design program is, however, unrealistic for proteins whose active sites are typically positioned close to the polar and flexible protein-water interface to allow inter-protein electron tunneling. The high flexibility of the interfacial region makes both the hydration water and the surface protein layer act as highly polar solvents. The reorganization energy, as measured by fluctuations, is not minimized, but rather maximized in this region. Natural systems in fact utilize the broad breadth of interfacial electrostatic fluctuations, but in the ways not anticipated by the standard models based on equilibrium thermodynamics. The combination of the broad spectrum of static fluctuations with their dispersive dynamics offers the mechanism of dynamical freezing (ergodicity breaking) of subsets of nuclear modes on the time of reaction/residence of the electron at a redox cofactor. The separation of time-scales of nuclear modes coupled to electron transfer allows dynamical freezing. In particular, the separation between the relaxation time of electro-elastic fluctuations of the interface and the time of conformational transitions of the protein caused by changing redox state results in dynamical freezing of the latter for sufficiently fast electron transfer. The observable consequence of this dynamical freezing is significantly different reorganization energies describing the curvature at the bottom of electron-transfer free energy surfaces (large) and the distance between their minima (Stokes shift, small). The ratio of the two reorganization energies establishes the parameter by which the energetic efficiency of protein electron transfer is increased relative to the standard expectations, thus minimizing losses of energy to heat. Energetically efficient electron transfer occurs in a chain of conformationally quenched cofactors and is characterized by flattened free energy surfaces, reminiscent of the flat and rugged landscape at the stability basin of a folded protein.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- Center for Biological Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, USA.
| |
Collapse
|
21
|
Martin DR, Fioretto D, Matyushov DV. Depolarized light scattering and dielectric response of a peptide dissolved in water. J Chem Phys 2014; 140:035101. [DOI: 10.1063/1.4861965] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
22
|
Nayar D, Chakravarty C. Water and water-like liquids: relationships between structure, entropy and mobility. Phys Chem Chem Phys 2013; 15:14162-77. [PMID: 23892732 DOI: 10.1039/c3cp51114f] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Liquids with very diverse underlying interactions share the thermodynamic and transport anomalies of water, including metalloids, ionic melts and mesoscopic fluids. The generic feature that characterises such water-like liquids is a density-driven shift in the nature of local order in the condensed phases. The key semiquantitative relationships between structural order, thermodynamics and transport that are necessary in order to map out the consequences of this common qualitative feature for liquid-state properties and phase transformations of such systems are reviewed here. The application of these ideas to understand and model tetrahedral liquids, especially water, is discussed and possible extensions to other complex fluids are considered.
Collapse
Affiliation(s)
- Divya Nayar
- Department of Chemistry, Indian Institute of Technology-Delhi, New Delhi, 110016, India
| | | |
Collapse
|
23
|
Roy S, Bagchi B. Solvation dynamics of tryptophan in water-dimethyl sulfoxide binary mixture: In search of molecular origin of composition dependent multiple anomalies. J Chem Phys 2013; 139:034308. [DOI: 10.1063/1.4813417] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Pal S, Bandyopadhyay S. Effects of protein conformational motions in the native form and non-uniform distribution of electrostatic interaction sites on interfacial water. Chem Phys 2013. [DOI: 10.1016/j.chemphys.2013.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
|
26
|
Rana MK, Chandra A. Ab initio and classical molecular dynamics studies of the structural and dynamical behavior of water near a hydrophobic graphene sheet. J Chem Phys 2013; 138:204702. [DOI: 10.1063/1.4804300] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
27
|
Li Y, Yang Z, Hu N, Zhou R, Chen X. Insights into hydrogen bond dynamics at the interface of the charged monolayer-protected Au nanoparticle from molecular dynamics simulation. J Chem Phys 2013; 138:184703. [DOI: 10.1063/1.4803504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
28
|
Pal S, Bandyopadhyay S. Effects of Protein Conformational Flexibilities and Electrostatic Interactions on the Low-Frequency Vibrational Spectrum of Hydration Water. J Phys Chem B 2013; 117:5848-56. [DOI: 10.1021/jp402662v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Somedatta Pal
- Molecular Modeling Laboratory, Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory, Department
of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
29
|
Guchhait B, Biswas R, Ghorai PK. Solute and Solvent Dynamics in Confined Equal-Sized Aqueous Environments of Charged and Neutral Reverse Micelles: A Combined Dynamic Fluorescence and All-Atom Molecular Dynamics Simulation Study. J Phys Chem B 2013; 117:3345-61. [DOI: 10.1021/jp310285k] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Biswajit Guchhait
- Department
of Chemical, Biological and
Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt
Lake, Kolkata 700098, India
| | - Ranjit Biswas
- Department
of Chemical, Biological and
Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt
Lake, Kolkata 700098, India
| | - Pradip K. Ghorai
- Indian Institute of Science Education and Research, Kolkata, Mohanpur Campus, Nadia 741252,
India
| |
Collapse
|
30
|
Pal S, Bandyopadhyay S. Importance of protein conformational motions and electrostatic anchoring sites on the dynamics and hydrogen bond properties of hydration water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1162-1173. [PMID: 23289748 DOI: 10.1021/la303959m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The microscopic dynamic properties of water molecules present in the vicinity of a protein are expected to be sensitive to its local conformational motions and the presence of polar and charged groups at the surface capable of anchoring water molecules through hydrogen bonds. In this work, we attempt to understand such sensitivity by performing detailed molecular dynamics simulations of the globular protein barstar solvated in aqueous medium. Our calculations demonstrate that enhanced confinement at the protein surface on freezing its local motions leads to increasingly restricted water mobility with long residence times around the secondary structures. It is found that the inability of the surface water molecules to bind with the protein residues by hydrogen bonds in the absence of protein-water (PW) electrostatic interactions is compensated by enhanced water-water hydrogen bonds around the protein with uniform bulklike behaviors. Importantly, it is further noticed that in contrast to the PW hydrogen bond relaxation time scale, the kinetics of the breaking and formation of such bonds are not affected on freezing the protein's conformational motions.
Collapse
Affiliation(s)
- Somedatta Pal
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India
| | | |
Collapse
|
31
|
Fogarty AC, Duboué-Dijon E, Sterpone F, Hynes JT, Laage D. Biomolecular hydration dynamics: a jump model perspective. Chem Soc Rev 2013; 42:5672-83. [DOI: 10.1039/c3cs60091b] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Jana M, Bandyopadhyay S. Restricted dynamics of water around a protein-carbohydrate complex: computer simulation studies. J Chem Phys 2012; 137:055102. [PMID: 22894384 DOI: 10.1063/1.4739421] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Water-mediated protein-carbohydrate interaction is a complex phenomenon responsible for different biological processes in cellular environment. One of the unexplored but important issues in this area is the role played by water during the recognition process and also in controlling the microscopic properties of the complex. In this study, we have carried out atomistic molecular dynamics simulations of a protein-carbohydrate complex formed between the hyaluronan binding domain of the murine Cd44 protein and the octasaccharide hyaluronan in explicit water. Efforts have been made to explore the heterogeneous influence of the complex on the dynamic properties of water present in different regions around it. It is revealed from our analyses that the heterogeneous dynamics of water around the complex are coupled with differential time scales of formation and breaking of hydrogen bonds at the interface. Presence of a highly rigid thin layer of motionally restricted water molecules bridging the protein and the carbohydrate in the common region of the complex has been identified. Such water molecules are expected to play a crucial role in controlling properties of the complex. Importantly, it is demonstrated that the formation of the protein-carbohydrate complex affects the transverse and longitudinal degrees of freedom of the interfacial water molecules in a heterogeneous manner.
Collapse
Affiliation(s)
- Madhurima Jana
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
| | | |
Collapse
|
33
|
Roy S, Jana B, Bagchi B. Dimethyl sulfoxide induced structural transformations and non-monotonic concentration dependence of conformational fluctuation around active site of lysozyme. J Chem Phys 2012; 136:115103. [PMID: 22443797 DOI: 10.1063/1.3694268] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations.
Collapse
Affiliation(s)
- Susmita Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
34
|
Borek J, Perakis F, Kläsi F, Garrett-Roe S, Hamm P. Azide–water intermolecular coupling measured by two-color two-dimensional infrared spectroscopy. J Chem Phys 2012; 136:224503. [DOI: 10.1063/1.4726407] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Sinha SK, Bandyopadhyay S. Polar solvation dynamics of lysozyme from molecular dynamics studies. J Chem Phys 2012; 136:185102. [DOI: 10.1063/1.4712036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Roy S, Bagchi B. Free Energy Barriers for Escape of Water Molecules from Protein Hydration Layer. J Phys Chem B 2012; 116:2958-68. [DOI: 10.1021/jp209437j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Susmita Roy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
37
|
|
38
|
Mamontov E, Chu XQ. Water–protein dynamic coupling and new opportunities for probing it at low to physiological temperatures in aqueous solutions. Phys Chem Chem Phys 2012; 14:11573-88. [DOI: 10.1039/c2cp41443k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|