• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643608)   Today's Articles (36)   Subscriber (50572)
For: Tsukamoto T, Mochizuki Y, Watanabe N, Fukuzawa K, Nakano T. Partial geometry optimization with FMO-MP2 gradient: Application to TrpCage. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.03.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Number Cited by Other Article(s)
1
Hengphasatporn K, Wilasluck P, Deetanya P, Wangkanont K, Chavasiri W, Visitchanakun P, Leelahavanichkul A, Paunrat W, Boonyasuppayakorn S, Rungrotmongkol T, Hannongbua S, Shigeta Y. Halogenated Baicalein as a Promising Antiviral Agent toward SARS-CoV-2 Main Protease. J Chem Inf Model 2022;62:1498-1509. [PMID: 35245424 DOI: 10.1021/acs.jcim.1c01304] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
2
Deetanya P, Hengphasatporn K, Wilasluck P, Shigeta Y, Rungrotmongkol T, Wangkanont K. Interaction of 8-anilinonaphthalene-1-sulfonate with SARS-CoV-2 main protease and its application as a fluorescent probe for inhibitor identification. Comput Struct Biotechnol J 2021;19:3364-3371. [PMID: 34109016 PMCID: PMC8178945 DOI: 10.1016/j.csbj.2021.05.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/22/2023]  Open
3
Geometry Optimization, Transition State Search, and Reaction Path Mapping Accomplished with the Fragment Molecular Orbital Method. Methods Mol Biol 2020. [PMID: 32016888 DOI: 10.1007/978-1-0716-0282-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
4
Watanabe C, Watanabe H, Fukuzawa K, Parker LJ, Okiyama Y, Yuki H, Yokoyama S, Nakano H, Tanaka S, Honma T. Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach. J Chem Inf Model 2017;57:2996-3010. [PMID: 29111719 DOI: 10.1021/acs.jcim.7b00110] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
5
Song C, Martínez TJ. Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units. J Chem Phys 2017;147:161723. [DOI: 10.1063/1.4997997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
6
Nakata H, Fedorov DG. Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method. J Phys Chem A 2016;120:9794-9804. [DOI: 10.1021/acs.jpca.6b09743] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
7
Fedorov DG, Kitaura K. Subsystem Analysis for the Fragment Molecular Orbital Method and Its Application to Protein-Ligand Binding in Solution. J Phys Chem A 2016;120:2218-31. [PMID: 26949816 DOI: 10.1021/acs.jpca.6b00163] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
8
Nakata H, Fedorov DG, Nagata T, Kitaura K, Nakamura S. Simulations of Chemical Reactions with the Frozen Domain Formulation of the Fragment Molecular Orbital Method. J Chem Theory Comput 2015;11:3053-64. [DOI: 10.1021/acs.jctc.5b00277] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
9
Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K. Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 2015;16:10310-44. [PMID: 24740821 DOI: 10.1039/c4cp00316k] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
10
Nishio M, Umezawa Y, Fantini J, Weiss MS, Chakrabarti P. CH-π hydrogen bonds in biological macromolecules. Phys Chem Chem Phys 2015;16:12648-83. [PMID: 24836323 DOI: 10.1039/c4cp00099d] [Citation(s) in RCA: 335] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
11
Raghavachari K, Saha A. Accurate Composite and Fragment-Based Quantum Chemical Models for Large Molecules. Chem Rev 2015;115:5643-77. [PMID: 25849163 DOI: 10.1021/cr500606e] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
12
Fedorov DG, Asada N, Nakanishi I, Kitaura K. The use of many-body expansions and geometry optimizations in fragment-based methods. Acc Chem Res 2014;47:2846-56. [PMID: 25144610 DOI: 10.1021/ar500224r] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Nakata H, Nagata T, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Analytic second derivatives of the energy in the fragment molecular orbital method. J Chem Phys 2013;138:164103. [DOI: 10.1063/1.4800990] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Nagata T, Fedorov DG, Kitaura K. Analytic gradient for the embedding potential with approximations in the fragment molecular orbital method. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
15
Nagata T, Fedorov DG, Li H, Kitaura K. Analytic gradient for second order Møller-Plesset perturbation theory with the polarizable continuum model based on the fragment molecular orbital method. J Chem Phys 2012;136:204112. [DOI: 10.1063/1.4714601] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA