1
|
Wang T, Yamato T, Sugiura W. Thermal Energy Transport through Nonbonded Native Contacts in Protein. J Phys Chem B 2024; 128:8641-8650. [PMID: 39197018 DOI: 10.1021/acs.jpcb.4c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Within the protein interior, where we observe various types of interactions, nonuniform flow of thermal energy occurs along the polypeptide chain and through nonbonded native contacts, leading to inhomogeneous transport efficiencies from one site to another. The folded native protein serves not merely as thermal transfer medium but, more importantly, as sophisticated molecular nanomachines in cells. Therefore, we are particularly interested in what sort of "communication" is mediated through native contacts in the folded proteins and how such features are quantitatively depicted in terms of local transport coefficients of heat currents. To address the issue, we introduced a concept of inter-residue thermal conductivity and characterized the nonuniform thermal transport properties of a small globular protein, HP36, using equilibrium molecular dynamics simulation and the Green-Kubo formula. We observed that the thermal transport of the protein was dominated by that along the polypeptide chain, while the local thermal conductivity of nonbonded native contacts decreased in the order of H-bonding > π-stacking > electrostatic > hydrophobic contacts. Furthermore, we applied machine learning techniques to analyze the molecular mechanism of protein thermal transport. As a result, the contact distance, variance in contact distance, and H-bonding occurrence probability during MD simulations are found to be the top three important determinants for predicting local thermal transport coefficients.
Collapse
Affiliation(s)
- Tingting Wang
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takahisa Yamato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Wataru Sugiura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
2
|
Song P, Huang Q, Li W, Li M, Liu Z. Decomposition of Forces in Protein: Methodology and General Properties. J Chem Inf Model 2024. [PMID: 39262153 DOI: 10.1021/acs.jcim.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In contrast to the central role played by the structure of biomolecules, the complementary force-based view has received little attention in past studies. Here, we proposed a simple method for the force decomposition of multibody interactions and provided some techniques to analyze and visualize the general behavior of forces in proteins. It was shown that atomic forces fluctuate at a magnitude of about 3000 pN, which is huge in the context of cell biology. Remarkably, the average scalar product between atomic force and displacement universally approximates -3kBT. This is smaller by an order of magnitude than the simple product of their fluctuation magnitudes due to the unexpectedly weak correlation between the directions of force and displacement. The pairwise forces are highly anisotropic, with elongated fluctuation ellipsoids. Residue-residue forces can be attractive or repulsive (despite being more likely to be attractive), forming some kind of tensegrity structure stabilized by a complicated network of forces. Being able to understand and predict the interaction network provides a basis for rational drug design and uncovering molecular recognition mechanisms.
Collapse
Affiliation(s)
- Pengbo Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qiaojing Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenyu Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Maodong Li
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Li H, Ma A. Kinetic energy flows in activated dynamics of biomolecules. J Chem Phys 2020; 153:094109. [DOI: 10.1063/5.0020275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huiyu Li
- Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, USA
| | - Ao Ma
- Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, USA
| |
Collapse
|
4
|
Li W. Residue-Residue Mutual Work Analysis of Retinal-Opsin Interaction in Rhodopsin: Implications for Protein-Ligand Binding. J Chem Theory Comput 2020; 16:1834-1842. [PMID: 31972074 DOI: 10.1021/acs.jctc.9b01035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Energetic contributions at the single-residue level for retinal-opsin interactions in rhodopsin were studied by combining molecular dynamics simulations, transition path sampling, and a newly developed energy decomposition approach. The virtual work at an infinitesimal time interval was decomposed into the work components on one residue due to its interaction with another residue, which were then averaged over the transition path ensemble along a proposed reaction coordinate. Such residue-residue mutual work analysis on 62 residues within the active center of rhodopsin resulted in a very sparse interaction matrix, which is generally not symmetric but antisymmetric to some extent. Fourteen residues were identified to be major players in retinal relaxation along a plausible pathway from bathorhodopsin to the blue-shifted intermediate, which is in good agreement with an existing NMR study. Based on the matrix of mutual work, a comprehensive network was constructed to provide detailed insights into the chromophore-protein interaction from a viewpoint of energy flow.
Collapse
Affiliation(s)
- Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Shivers JL, Arzash S, Sharma A, MacKintosh FC. Scaling Theory for Mechanical Critical Behavior in Fiber Networks. PHYSICAL REVIEW LETTERS 2019; 122:188003. [PMID: 31144872 DOI: 10.1103/physrevlett.122.188003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 06/09/2023]
Abstract
As a function of connectivity, spring networks exhibit a critical transition between floppy and rigid phases at an isostatic threshold. For connectivity below this threshold, fiber networks were recently shown theoretically to exhibit a rigidity transition with corresponding critical signatures as a function of strain. Experimental collagen networks were also shown to be consistent with these predictions. We develop a scaling theory for this strain-controlled transition. Using a real-space renormalization approach, we determine relations between the critical exponents governing the transition, which we verify for the strain-controlled transition using numerical simulations of both triangular lattice-based and packing-derived fiber networks.
Collapse
Affiliation(s)
- Jordan L Shivers
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Sadjad Arzash
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
| | - Abhinav Sharma
- Leibniz Institute for Polymer Research Dresden, 01069 Dresden, Germany
| | - Fred C MacKintosh
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77030, USA
- Departments of Chemistry and Physics & Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
6
|
Ota K, Yamato T. Energy Exchange Network Model Demonstrates Protein Allosteric Transition: An Application to an Oxygen Sensor Protein. J Phys Chem B 2019; 123:768-775. [DOI: 10.1021/acs.jpcb.8b10489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kunitaka Ota
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takahisa Yamato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Genetics and Molecular and Cellular Biology, University of Strasbourg, 1 rue Laurent Fries Parc d’Innovation, 67404 Illkirch, Cedex, France
| |
Collapse
|
7
|
Leitner DM, Yamato T. MAPPING ENERGY TRANSPORT NETWORKS IN PROTEINS. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Reid KM, Yamato T, Leitner DM. Scaling of Rates of Vibrational Energy Transfer in Proteins with Equilibrium Dynamics and Entropy. J Phys Chem B 2018; 122:9331-9339. [DOI: 10.1021/acs.jpcb.8b07552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
9
|
Kononova O, Maksudov F, Marx KA, Barsegov V. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:044006. [PMID: 29231176 PMCID: PMC7104887 DOI: 10.1088/1361-648x/aaa0f6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 05/02/2023]
Abstract
A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and [Formula: see text]-based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid's mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.
Collapse
Affiliation(s)
- Olga Kononova
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States of America
- Moscow Institute of Physics and Technology, Moscow Region, 141700, Russia
| | - Farkhad Maksudov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States of America
| | - Kenneth A Marx
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States of America
| | - Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States of America
- Moscow Institute of Physics and Technology, Moscow Region, 141700, Russia
| |
Collapse
|
10
|
Strain analysis of protein structures and low dimensionality of mechanical allosteric couplings. Proc Natl Acad Sci U S A 2016; 113:E5847-E5855. [PMID: 27655887 DOI: 10.1073/pnas.1609462113] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In many proteins, especially allosteric proteins that communicate regulatory states from allosteric to active sites, structural deformations are functionally important. To understand these deformations, dynamical experiments are ideal but challenging. Using static structural information, although more limited than dynamical analysis, is much more accessible. Underused for protein analysis, strain is the natural quantity for studying local deformations. We calculate strain tensor fields for proteins deformed by ligands or thermal fluctuations using crystal and NMR structure ensembles. Strains-primarily shears-show deformations around binding sites. These deformations can be induced solely by ligand binding at distant allosteric sites. Shears reveal quasi-2D paths of mechanical coupling between allosteric and active sites that may constitute a widespread mechanism of allostery. We argue that strain-particularly shear-is the most appropriate quantity for analysis of local protein deformations. This analysis can reveal mechanical and biological properties of many proteins.
Collapse
|
11
|
Ishikura T, Iwata Y, Hatano T, Yamato T. Energy exchange network of inter-residue interactions within a thermally fluctuating protein molecule: A computational study. J Comput Chem 2015; 36:1709-18. [PMID: 26147235 DOI: 10.1002/jcc.23989] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 12/14/2022]
Abstract
Protein function is regulated not only by the structure but also by physical dynamics and thermal fluctuations. We have developed the computer program, CURrent calculation for proteins (CURP), for the flow analysis of physical quantities within thermally fluctuating protein media. The CURP program was used to calculate the energy flow within the third PDZ domain of the neuronal protein PSD-95, and the results were used to illustrate the energy exchange network of inter-residue interactions based on atomistic molecular dynamics simulations. The removal of the α3 helix is known to decrease ligand affinity by 21-fold without changing the overall protein structure; nevertheless, we demonstrated that the helix constitutes an essential part of the network graph.
Collapse
Affiliation(s)
- Takakazu Ishikura
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya, 464-8602, Japan
| | - Yuki Iwata
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya, 464-8602, Japan
| | - Tatsuro Hatano
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya, 464-8602, Japan
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku Nagoya, 464-8602, Japan
| |
Collapse
|
12
|
Calculation and visualization of atomistic mechanical stresses in nanomaterials and biomolecules. PLoS One 2014; 9:e113119. [PMID: 25503996 PMCID: PMC4263534 DOI: 10.1371/journal.pone.0113119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/23/2014] [Indexed: 11/19/2022] Open
Abstract
Many biomolecules have machine-like functions, and accordingly are discussed in terms of mechanical properties like force and motion. However, the concept of stress, a mechanical property that is of fundamental importance in the study of macroscopic mechanics, is not commonly applied in the biomolecular context. We anticipate that microscopical stress analyses of biomolecules and nanomaterials will provide useful mechanistic insights and help guide molecular design. To enable such applications, we have developed Calculator of Atomistic Mechanical Stress (CAMS), an open-source software package for computing atomic resolution stresses from molecular dynamics (MD) simulations. The software also enables decomposition of stress into contributions from bonded, nonbonded and Generalized Born potential terms. CAMS reads GROMACS topology and trajectory files, which are easily generated from AMBER files as well; and time-varying stresses may be animated and visualized in the VMD viewer. Here, we review relevant theory and present illustrative applications.
Collapse
|
13
|
Ishikura T, Hatano T, Yamato T. Corrigendum to “Atomic stress tensor analysis of proteins” [Chem. Phys. Lett. 539 (2012) 144–150]. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
|