1
|
Lima Neto JX, Bezerra KS, Barbosa ED, Araujo RL, Galvão DS, Lyra ML, Oliveira JIN, Akash S, Jardan YAB, Nafidi HA, Bourhia M, Fulco UL. Investigation of protein-protein interactions and hotspot region on the NSP7-NSP8 binding site in NSP12 of SARS-CoV-2. Front Mol Biosci 2024; 10:1325588. [PMID: 38304231 PMCID: PMC10830813 DOI: 10.3389/fmolb.2023.1325588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Background: The RNA-dependent RNA polymerase (RdRp) complex, essential in viral transcription and replication, is a key target for antiviral therapeutics. The core unit of RdRp comprises the nonstructural protein NSP12, with NSP7 and two copies of NSP8 (NSP81 and NSP82) binding to NSP12 to enhance its affinity for viral RNA and polymerase activity. Notably, the interfaces between these subunits are highly conserved, simplifying the design of molecules that can disrupt their interaction. Methods: We conducted a detailed quantum biochemical analysis to characterize the interactions within the NSP12-NSP7, NSP12-NSP81, and NSP12-NSP82 dimers. Our objective was to ascertain the contribution of individual amino acids to these protein-protein interactions, pinpointing hotspot regions crucial for complex stability. Results: The analysis revealed that the NSP12-NSP81 complex possessed the highest total interaction energy (TIE), with 14 pairs of residues demonstrating significant energetic contributions. In contrast, the NSP12-NSP7 complex exhibited substantial interactions in 8 residue pairs, while the NSP12-NSP82 complex had only one pair showing notable interaction. The study highlighted the importance of hydrogen bonds and π-alkyl interactions in maintaining these complexes. Intriguingly, introducing the RNA sequence with Remdesivir into the complex resulted in negligible alterations in both interaction energy and geometric configuration. Conclusion: Our comprehensive analysis of the RdRp complex at the protein-protein interface provides invaluable insights into interaction dynamics and energetics. These findings can guide the design of small molecules or peptide/peptidomimetic ligands to disrupt these critical interactions, offering a strategic pathway for developing effective antiviral drugs.
Collapse
Affiliation(s)
- José Xavier Lima Neto
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katyanna Sales Bezerra
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Emmanuel Duarte Barbosa
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Roniel Lima Araujo
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Shopnil Akash
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
2
|
Dutkiewicz Z. Computational methods for calculation of protein-ligand binding affinities in structure-based drug design. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Drug design is an expensive and time-consuming process. Any method that allows reducing the time the costs of the drug development project can have great practical value for the pharmaceutical industry. In structure-based drug design, affinity prediction methods are of great importance. The majority of methods used to predict binding free energy in protein-ligand complexes use molecular mechanics methods. However, many limitations of these methods in describing interactions exist. An attempt to go beyond these limits is the application of quantum-mechanical description for all or only part of the analyzed system. However, the extensive use of quantum mechanical (QM) approaches in drug discovery is still a demanding challenge. This chapter briefly reviews selected methods used to calculate protein-ligand binding affinity applied in virtual screening (VS), rescoring of docked poses, and lead optimization stage, including QM methods based on molecular simulations.
Collapse
Affiliation(s)
- Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs , Poznan University of Medical Sciences , ul. Grunwaldzka 6 , 60-780 Poznań , Poznan , 60-780, Poland
| |
Collapse
|
3
|
França VLB, Amaral JL, Martins YA, Caetano EWS, Brunaldi K, Freire VN. Characterization of the binding interaction between atrazine and human serum albumin: Fluorescence spectroscopy, molecular dynamics and quantum biochemistry. Chem Biol Interact 2022; 366:110130. [PMID: 36037875 DOI: 10.1016/j.cbi.2022.110130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
Atrazine (ATR), one of the most used herbicides worldwide, causes persistent contamination of water and soil due to its high resistance to degradation. ATR is associated with low fertility and increased risk of prostate cancer in humans, as well as birth defects, low birth weight and premature delivery. Describing ATR binding to human serum albumin (HSA) is clinically relevant to future studies about pharmacokinetics, pharmacodynamics and toxicity of ATR, as albumin is the most abundant carrier protein in plasma and binds important small biological molecules. In this work we characterize, for the first time, the binding of ATR to HSA by using fluorescence spectroscopy and performing simulations using molecular docking, classical molecular dynamics and quantum biochemistry based on density functional theory (DFT). We determine the most likely binding sites of ATR to HSA, highlighting the fatty acid binding site FA8 (located between subdomains IA-IB-IIA and IIB-IIIA-IIIB) as the most important one, and evaluate each nearby amino acid residue contribution to the binding interactions explaining the fluorescence quenching due to ATR complexation with HSA. The stabilization of the ATR/FA8 complex was also aided by the interaction between the atrazine ring and SER454 (hydrogen bond) and LEU481(alkyl interaction).
Collapse
Affiliation(s)
- Victor L B França
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Jackson L Amaral
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Yandara A Martins
- Departament of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ewerton W S Caetano
- Federal Institute of Education, Science and Technology of Ceará, Fortaleza, 60040-531, Brazil
| | - Kellen Brunaldi
- Departament of Physiological Sciences, State University of Maringá, Maringá, 87020-900, Brazil.
| | - Valder N Freire
- Departament of Physics, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| |
Collapse
|
4
|
Lima Neto JX, Vieira DS, de Andrade J, Fulco UL. Exploring the Spike-hACE 2 Residue-Residue Interaction in Human Coronaviruses SARS-CoV-2, SARS-CoV, and HCoV-NL63. J Chem Inf Model 2022; 62:2857-2868. [PMID: 35617018 PMCID: PMC9159508 DOI: 10.1021/acs.jcim.1c01544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 12/20/2022]
Abstract
Coronaviruses (CoVs) have been responsible for three major outbreaks since the beginning of the 21st century, and the emergence of the recent COVID-19 pandemic has resulted in considerable efforts to design new therapies against coronaviruses. Thus, it is crucial to understand the structural features of their major proteins related to the virus-host interaction. Several studies have shown that from the seven known CoV human pathogens, three of them use the human Angiotensin-Converting Enzyme 2 (hACE-2) to mediate their host's cell entry: SARS-CoV-2, SARS-CoV, and HCoV-NL63. Therefore, we employed quantum biochemistry techniques within the density function theory (DFT) framework and the molecular fragmentation with conjugate caps (MFCC) approach to analyze the interactions between the hACE-2 and the spike protein-RBD of the three CoVs in order to map the hot-spot residues that form the recognition surface for these complexes and define the similarities and differences in the interaction scenario. The total interaction energy evaluated showed a good agreement with the experimental binding affinity order: SARS-2 > SARS > NL63. A detailed investigation revealed the energetically most relevant regions of hACE-2 and the spike protein for each complex, as well as the key residue-residue interactions. Our results provide valuable information to deeply understand the structural behavior and binding site characteristics that could help to develop antiviral therapeutics that inhibit protein-protein interactions between CoVs S protein and hACE-2.
Collapse
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia,
Universidade Federal do Rio Grande do Norte, 59072-970
Natal-RN, Brazil
| | - Davi S. Vieira
- Instituto de Química, Universidade
Federal do Rio Grande do Norte, 59072-970 Natal-RN,
Brazil
| | - Jones de Andrade
- Department of Physical Chemistry,
Universidade Federal do Rio Grande do Sul, 91501-970 Porto
Alegre-RS, Brazil
| | - Umberto Laino Fulco
- Departamento de Biofísica e Farmacologia,
Universidade Federal do Rio Grande do Norte, 59072-970
Natal-RN, Brazil
| |
Collapse
|
5
|
Tavares ABMLA, Lima Neto JX, Fulco UL, Albuquerque EL. Blockade of the checkpoint PD-1 by its ligand PD-L1 and the immuno-oncological drugs pembrolizumab and nivolumab. Phys Chem Chem Phys 2021; 23:21207-21217. [PMID: 34533552 DOI: 10.1039/d1cp03064g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigate the interaction between the programmed cell death protein 1 (PD-1) and the programmed cell death ligand 1 (PD-L1), as well as the immuno-oncological drugs pembrolizumab (PEM), and nivolumab (NIV), through quantum chemistry methods based on the Density Functional Theory (DFT) and the molecular fractionation with conjugate caps (MFCC) scheme, in order to map their hot-spot regions. Our results showed that the total interaction energy order of the three complexes is in good agreement with the experimental binding affinity order: PD-1/PEM > PD-1/NIV > PD-1/PD-L1. Besides, a detailed investigation revealed the energetically most relevant residue-residue pairs-interaction for each complex. Our computational results give a better understanding of the interaction mechanism between the protein PD-1 and its ligands (natural and inhibitors), unleashing the immune surveillance to destroy the cancer cells by decreasing their immune evasion. They are also an efficient alternative towards the development of new small-molecules and antibody-based drugs, pointing out to new treatments for cancer therapy.
Collapse
Affiliation(s)
- Ana Beatriz M L A Tavares
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil. .,Hospital das Clínicas, Universidade Federal de Pernambuco, 50.670-901, Recife-PE, Brazil
| | - J X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| | - U L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| | - E L Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN, Brazil.
| |
Collapse
|
6
|
Silva SRB, de Lima Neto JX, Fuzo CA, Fulco UL, Vieira DS. A quantum biochemistry investigation of the protein-protein interactions for the description of allosteric modulation on biomass-degrading chimera. Phys Chem Chem Phys 2020; 22:25936-25948. [PMID: 33164009 DOI: 10.1039/d0cp04415f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The worldwide dependence of population on fossil fuels continues to have several harmful implications for the environment. Bioethanol is an excellent option for renewable fuel to replace the current greenhouse gas emitters. In addition, its production by enzymatic route has gained space among the industrial processes because it replaces the traditional acid treatment. Due to its high versatility, the xylanase family is used in this process as an accessory enzyme for degrading the lignocellulosic substrate of biomass. A chimera built by a xylanolytic domain (Xyl) and a xylose-binding protein (XBP) showed an experimentally improved catalytic efficiency and interdomain allosteric modulation after xylose binding. In this context, we performed a quantum biochemistry characterization of the interactions between these domains and dynamic cross-correlation (DCC) analysis after performing molecular dynamics (DM) simulations of the systems in the presence and absence of xylose in the XBP active site. We used the density functional theory (DFT) within the molecular fractionation with the conjugated caps (MFCC) approach to describe the pair energies, and the corresponding energy difference between the chimera domains responsible for the allosteric effect and amino acid DCC to evaluate the interdomain coupling differences between the energy states. The detailed energetic investigation together with the related structural and dynamics counterparts revealed the molecular mechanisms of chimeric improvement of the xylanase activity observed experimentally. This mechanism was correlated with greater stability and high connectivity at the interdomain interface in the xylose bound relative to the free chimera. We identify the contributions of hydrogen bonds, hydrophobic interactions and water-mediated interactions in the interdomain region responsible for stability together with the structural and dynamical elements related to the allosteric effect. Taken together, these observations led to a comprehensive understanding of the chimera's modulatory action that occurs through the formation of a highly connected interface that makes the essential movements related to xylanolytic activity in xylanase correlated to those of the xylose-binding protein.
Collapse
|
7
|
Santos de Oliveira FL, Vieira Carletti J, Azevedo FFN, Freitas de Sousa FJ, Caetano EWS, Freire VN, Zanatta G. mTOR–mLST8 interaction: hot spot identification through quantum biochemistry calculations. NEW J CHEM 2020. [DOI: 10.1039/d0nj04099a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantum calculation of mTOR–mLST8 interaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Geancarlo Zanatta
- Department of Physics at Federal University of Ceará
- 60455-760 Fortaleza
- Brazil
- Postgraduate Research Program in Biochemistry at Federal University of Ceará
- Fortaleza
| |
Collapse
|
8
|
Tavares ABMLA, Lima Neto JX, Fulco UL, Albuquerque EL. A quantum biochemistry approach to investigate checkpoint inhibitor drugs for cancer. NEW J CHEM 2019. [DOI: 10.1039/c8nj05561k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We investigate the coupling profiles of the receptor PD-1 in complex with its natural ligand PDL1 and two inhibitor drugs.
Collapse
Affiliation(s)
| | - José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | |
Collapse
|
9
|
The electrostatic embedding contribution to DFT calculations of ligand-amino acid residues interaction. J Mol Model 2018; 24:211. [DOI: 10.1007/s00894-018-3743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
10
|
Tavares ABMLA, Lima Neto JX, Fulco UL, Albuquerque EL. Inhibition of the checkpoint protein PD-1 by the therapeutic antibody pembrolizumab outlined by quantum chemistry. Sci Rep 2018; 8:1840. [PMID: 29382901 PMCID: PMC5789983 DOI: 10.1038/s41598-018-20325-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/16/2018] [Indexed: 12/16/2022] Open
Abstract
Much of the recent excitement in the cancer immunotherapy approach has been generated by the recognition that immune checkpoint proteins, like the receptor PD-1, can be blocked by antibody-based drugs with profound effects. Promising clinical data have already been released pointing to the efficiency of the drug pembrolizumab to block the PD-1 pathway, triggering the T-lymphocytes to destroy the cancer cells. Thus, a deep understanding of this drug/receptor complex is essential for the improvement of new drugs targeting the protein PD-1. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT), we investigate in silico the binding energy features of the receptor PD-1 in complex with its drug inhibitor. Our computational results give a better understanding of the binding mechanisms, being also an efficient alternative towards the development of antibody-based drugs, pointing to new treatments for cancer therapy.
Collapse
Affiliation(s)
- Ana Beatriz M L A Tavares
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - José X Lima Neto
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Umberto L Fulco
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil
| | - Eudenilson L Albuquerque
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil.
| |
Collapse
|
11
|
Bezerra KS, Lima Neto JX, Oliveira JIN, Albuquerque EL, Caetano EWS, Freire VN, Fulco UL. Computational investigation of the α2β1 integrin–collagen triple helix complex interaction. NEW J CHEM 2018. [DOI: 10.1039/c8nj04175j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, quantum biochemistry methods have been used to describe important protein–protein interactions for the complex integrin–collagen.
Collapse
Affiliation(s)
- K. S. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - J. X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - J. I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - E. L. Albuquerque
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - E. W. S. Caetano
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Fortaleza-CE
- Brazil
| | - V. N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza-CE
- Brazil
| | - U. L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| |
Collapse
|
12
|
Lima Neto JX, Soares-Rachetti VP, Albuquerque EL, Manzoni V, Fulco UL. Outlining migrainous through dihydroergotamine–serotonin receptor interactions using quantum biochemistry. NEW J CHEM 2018. [DOI: 10.1039/c7nj03645k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the electronic structure of the complex dihydroergotamine–serotonin receptor to unveil new medications to treat migraine and related diseases.
Collapse
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | | | | | - Vinicius Manzoni
- Instituto de Física
- Universidade Federal de Alagoas
- Maceio-AL
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| |
Collapse
|
13
|
de Sousa B, Oliveira J, Albuquerque E, Fulco U, Amaro V, Blaha C. Molecular modelling and quantum biochemistry computations of a naturally occurring bioremediation enzyme: Alkane hydroxylase from Pseudomonas putida P1. J Mol Graph Model 2017; 77:232-239. [DOI: 10.1016/j.jmgm.2017.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/24/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022]
|
14
|
Neto JXL, Bezerra KS, Manso DN, Mota KB, Oliveira JIN, Albuquerque EL, Caetano EWS, Freire VN, Fulco UL. Energetic description of cilengitide bound to integrin. NEW J CHEM 2017. [DOI: 10.1039/c7nj02166f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We employ quantum chemistry methods to investigate the binding energy features of the cyclic RGD pentapeptide cilengitide interacting with the integrin receptor αVβ3.
Collapse
Affiliation(s)
- José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Katyanna S. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Dalila N. Manso
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Kyvia B. Mota
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| | | | | | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza-CE
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal-RN
- Brazil
| |
Collapse
|
15
|
Martins ACV, de-Lima-Neto P, Caetano EWS, Freire VN. An improved quantum biochemistry description of the glutamate–GluA2 receptor binding within an inhomogeneous dielectric function framework. NEW J CHEM 2017. [DOI: 10.1039/c6nj03939a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new methodology to define the inhomogeneous dielectric constant of protein residues, to apply to the calculation of protein–ligand properties such as the electrostatic interaction.
Collapse
Affiliation(s)
- A. C. V. Martins
- Department of Analytical Chemistry and Physical-Chemistry
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| | - P. de-Lima-Neto
- Department of Analytical Chemistry and Physical-Chemistry
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| | - E. W. S. Caetano
- Federal Institute of Education
- Science and Technology of Ceara
- 60040-531 Fortaleza
- Brazil
| | - V. N. Freire
- Department of Physics
- Federal University of Ceara
- 60455-760 Fortaleza
- Brazil
| |
Collapse
|
16
|
Bezerra KS, Oliveira JIN, Lima Neto JX, Albuquerque EL, Caetano EWS, Freire VN, Fulco UL. Quantum binding energy features of the T3-785 collagen-like triple-helical peptide. RSC Adv 2017. [DOI: 10.1039/c6ra25206k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Structural representation of the T3-785 collagen-like triple-helical peptide depicting the 15 most and fewest energetically significant amino acids.
Collapse
Affiliation(s)
- Katyanna S. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | | | | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
17
|
Mota K, Lima Neto J, Lima Costa A, Oliveira J, Bezerra K, Albuquerque E, Caetano E, Freire V, Fulco U. A quantum biochemistry model of the interaction between the estrogen receptor and the two antagonists used in breast cancer treatment. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Ryde U, Söderhjelm P. Ligand-Binding Affinity Estimates Supported by Quantum-Mechanical Methods. Chem Rev 2016; 116:5520-66. [DOI: 10.1021/acs.chemrev.5b00630] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ulf Ryde
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Pär Söderhjelm
- Department of Theoretical
Chemistry and ‡Department of Biophysical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
19
|
Martins AC, Ribeiro FW, Zanatta G, Freire VN, Morais S, de Lima-Neto P, Correia AN. Modeling of laccase inhibition by formetanate pesticide using theoretical approaches. Bioelectrochemistry 2016; 108:46-53. [DOI: 10.1016/j.bioelechem.2015.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/12/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
|
20
|
Sousa BL, Barroso-Neto IL, Oliveira EF, Fonseca E, Lima-Neto P, Ladeira LO, Freire VN. Explaining RANKL inhibition by OPG through quantum biochemistry computations and insights into peptide-design for the treatment of osteoporosis. RSC Adv 2016. [DOI: 10.1039/c6ra16712h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Quantum biochemistry computations are applied to precisely describe important protein–protein interactions, providing a basis for the design of inhibitory peptides against osteoporosis.
Collapse
Affiliation(s)
- Bruno L. Sousa
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Ito L. Barroso-Neto
- Departamento de Química Analítica e Físico-Química
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | - Emerson Fonseca
- Departamento de Física
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Pedro Lima-Neto
- Departamento de Química Analítica e Físico-Química
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Luiz O. Ladeira
- Departamento de Física
- Universidade Federal de Minas Gerais
- Belo Horizonte
- Brazil
| | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| |
Collapse
|
21
|
Ourique GS, Vianna JF, Neto JXL, Oliveira JIN, Mauriz PW, Vasconcelos MS, Caetano EWS, Freire VN, Albuquerque EL, Fulco UL. A quantum chemistry investigation of a potential inhibitory drug against the dengue virus. RSC Adv 2016. [DOI: 10.1039/c6ra10121f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The total interaction energy of the inhibitor Bz-nKRR-H bound to a serine protease of the dengue virus is mainly due to the action of Asn152, Met49, Tyr161, Asp129 and Gly151 (Met84, Met75, Asp81, Asp79 and Asp80) residues at the NS3 (NS2B) subunit.
Collapse
Affiliation(s)
- G. S. Ourique
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. F. Vianna
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - J. I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - P. W. Mauriz
- Departamento de Física
- Instituto Federal de Educação
- Ciência e Tecnologia do Maranhão
- São Luís
- Brazil
| | - M. S. Vasconcelos
- Escola de Ciência e Tecnologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - E. W. S. Caetano
- Instituto Federal de Educação
- Ciência e Tecnologia do Ceará
- Fortaleza
- Brazil
| | - V. N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - E. L. Albuquerque
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - U. L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| |
Collapse
|
22
|
Norouzi M, Boroujeni SM, Omidvarkordshouli N, Soleimani M. Advances in skin regeneration: application of electrospun scaffolds. Adv Healthc Mater 2015; 4:1114-33. [PMID: 25721694 DOI: 10.1002/adhm.201500001] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Indexed: 12/28/2022]
Abstract
The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed.
Collapse
Affiliation(s)
- Mohammad Norouzi
- Department of Nanotechnology and Tissue Engineering; Stem Cell Technology Research Center; Tehran Iran
| | | | | | - Masoud Soleimani
- Department of Hematology; Faculty of Medical Sciences; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
23
|
Dantas DS, Oliveira JIN, Lima Neto JX, da Costa RF, Bezerra EM, Freire VN, Caetano EWS, Fulco UL, Albuquerque EL. Quantum molecular modelling of ibuprofen bound to human serum albumin. RSC Adv 2015. [DOI: 10.1039/c5ra04395f] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The total interaction energies of the ibuprofen complexed with FA3/FA4 and FA6 binding sites of human serum albumin are in agreement with the hypothesis that the Sudlow's site II is the main binding pocket for ibuprofen.
Collapse
Affiliation(s)
- Diego S. Dantas
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Jonas I. N. Oliveira
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - José X. Lima Neto
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Roner F. da Costa
- Departamento de Física
- Universidade Federal Rural do Semi-Árido
- Brazil
| | - Eveline M. Bezerra
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | - Valder N. Freire
- Departamento de Física
- Universidade Federal do Ceará
- Fortaleza
- Brazil
| | | | - Umberto L. Fulco
- Departamento de Biofísica e Farmacologia
- Universidade Federal do Rio Grande do Norte
- Natal
- Brazil
| | | |
Collapse
|
24
|
Zanatta G, Nunes G, Bezerra EM, da Costa RF, Martins A, Caetano EWS, Freire VN, Gottfried C. Antipsychotic haloperidol binding to the human dopamine D3 receptor: beyond docking through QM/MM refinement toward the design of improved schizophrenia medicines. ACS Chem Neurosci 2014; 5:1041-54. [PMID: 25181639 DOI: 10.1021/cn500111e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
As the dopamine D3R receptor is a promising target for schizophrenia treatment, an improved understanding of the binding of existing antipsychotics to this receptor is crucial for the development of new potent and more selective therapeutic agents. In this work, we have used X-ray cocrystallization data of the antagonist eticlopride bound to D3R as a template to predict, through docking essays, the placement of the typical antipsychotic drug haloperidol at the D3R receptor binding site. Afterward, classical and quantum mechanics/molecular mechanics (QM/MM) computations were employed to improve the quality of the docking calculations, with the QM part of the simulations being accomplished by using the density functional theory (DFT) formalism. After docking, the calculated QM improved total interaction energy EQMDI = -170.1 kcal/mol was larger (in absolute value) than that obtained with classical molecular mechanics improved (ECLDI = -156.3 kcal/mol) and crude docking (ECRDI = -137.6 kcal/mol) procedures. The QM/MM computations reveal the pivotal role of the Asp110 amino acid residue in the D3R haloperidol binding, followed by Tyr365, Phe345, Ile183, Phe346, Tyr373, and Cys114. Besides, it highlights the relevance of the haloperidol hydroxyl group axial orientation, which interacts with the Tyr365 and Thr369 residues, enhancing its binding to dopamine receptors. Finally, our computations indicate that functional substitutions in the 4-clorophenyl and in the 4-hydroxypiperidin-1-yl fragments (such as C3H and C12H hydrogen replacement by OH or COOH) can lead to haloperidol derivatives with distinct dopamine antagonism profiles. The results of our work are a first step using in silico quantum biochemical design as means to impact the discovery of new medicines to treat schizophrenia.
Collapse
Affiliation(s)
- Geancarlo Zanatta
- Department
of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS Brazil
| | - Gustavo Nunes
- Department
of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS Brazil
| | - Eveline M. Bezerra
- Post-graduate
Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Roner F. da Costa
- Department
of Physics, Universidade Federal Rural do Semi-Árido, 59780-000 Caraúbas, RN Brazil
| | - Alice Martins
- Post-graduate
Program in Pharmaceutical Sciences, Pharmacy Faculty, Federal University of Ceará, 60430-372 Fortaleza, CE Brazil
| | - Ewerton W. S. Caetano
- Federal Institute of Education, Science and Technology, 60040-531 Fortaleza, CE Brazil
| | - Valder N. Freire
- Department
of Physics, Federal University of Ceará, 60455-760 Fortaleza, CE Brazil
| | - Carmem Gottfried
- Department
of Biochemistry, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS Brazil
| |
Collapse
|
25
|
da Silva Ribeiro TC, da Costa RF, Bezerra EM, Freire VN, Lyra ML, Manzoni V. The quantum biophysics of the isoniazid adduct NADH binding to its InhA reductase target. NEW J CHEM 2014. [DOI: 10.1039/c3nj01453c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|