1
|
Hikiri S, Hayashi T, Inoue M, Ekimoto T, Ikeguchi M, Kinoshita M. An accurate and rapid method for calculating hydration free energies of a variety of solutes including proteins. J Chem Phys 2019; 150:175101. [DOI: 10.1063/1.5093110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Simon Hikiri
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Tomohiko Hayashi
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masao Inoue
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
- RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masahiro Kinoshita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Takemura K, Matubayasi N, Kitao A. Binding free energy analysis of protein-protein docking model structures by evERdock. J Chem Phys 2018; 148:105101. [PMID: 29544320 DOI: 10.1063/1.5019864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.
Collapse
Affiliation(s)
- Kazuhiro Takemura
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan
| |
Collapse
|
3
|
Tran DP, Takemura K, Kuwata K, Kitao A. Protein-Ligand Dissociation Simulated by Parallel Cascade Selection Molecular Dynamics. J Chem Theory Comput 2017; 14:404-417. [PMID: 29182324 DOI: 10.1021/acs.jctc.7b00504] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the dissociation process of tri-N-acetyl-d-glucosamine from hen egg white lysozyme using parallel cascade selection molecular dynamics (PaCS-MD), which comprises cycles of multiple unbiased MD simulations using a selection of MD snapshots as the initial structures for the next cycle. Dissociation was significantly accelerated by PaCS-MD, in which the probability of rare event occurrence toward dissociation was enhanced by the selection and rerandomization of the initial velocities. Although this complex was stable during 1 μs of conventional MD, PaCS-MD easily induced dissociation within 100-101 ns. We found that velocity rerandomization enhances the dissociation of triNAG from the bound state, whereas diffusion plays a more important role in the unbound state. We calculated the dissociation free energy by analyzing all PaCS-MD trajectories using the Markov state model (MSM), compared the results to those obtained by combinations of PaCS-MD and umbrella sampling (US), steered MD (SMD) and US, and SMD and the Jarzynski equality, and experimentally determined binding free energy. PaCS-MD/MSM yielded results most comparable to the experimentally determined binding free energy, independent of simulation parameter variations, and also gave the lowest standard errors.
Collapse
Affiliation(s)
- Duy Phuoc Tran
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo , 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kazuhiro Takemura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kazuo Kuwata
- Center for Emerging Infectious Diseases, Gifu University , 1-1 Yanagido, Gifu-shi, Gifu 501-1194, Japan
| | - Akio Kitao
- School of Life Science and Technology, Tokyo Institute of Technology , 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
4
|
Takemura K, Hanawa-Suetsugu K, Suetsugu S, Kitao A. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature. Sci Rep 2017; 7:6808. [PMID: 28754893 PMCID: PMC5533756 DOI: 10.1038/s41598-017-06334-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight “zeppelin-shaped” dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.
Collapse
Affiliation(s)
- Kazuhiro Takemura
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan
| | - Kyoko Hanawa-Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Shiro Suetsugu
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Akio Kitao
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-0032, Japan.
| |
Collapse
|
5
|
High anisotropy and frustration: the keys to regulating protein function efficiently in crowded environments. Curr Opin Struct Biol 2017; 42:50-58. [DOI: 10.1016/j.sbi.2016.10.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/16/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022]
|
6
|
Li H, Sakuraba S, Chandrasekaran A, Yang LW. Molecular Binding Sites Are Located Near the Interface of Intrinsic Dynamics Domains (IDDs). J Chem Inf Model 2014; 54:2275-85. [DOI: 10.1021/ci500261z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hongchun Li
- Department
of Chemistry, College of Chemistry and Chemical
Engineering, and Key Laboratory for Chemical
Biology of Fujian Province, Xiamen University, Xiamen, P. R. China
- Institute
of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Shun Sakuraba
- Quantum
Beam Science Center, Japan Atomic Energy Agency, Kyoto, Japan
| | - Aravind Chandrasekaran
- Institute
of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan
| | - Lee-Wei Yang
- Institute
of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
7
|
Sakuraba S, Matubayasi N. Ermod: Fast and versatile computation software for solvation free energy with approximate theory of solutions. J Comput Chem 2014; 35:1592-608. [DOI: 10.1002/jcc.23651] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/10/2014] [Accepted: 05/16/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Shun Sakuraba
- Quantum Beam Science Directorate, Japan Atomic Energy Agency; Kizugawa Kyoto 619-0215 Japan
- Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
| | - Nobuyuki Matubayasi
- Division of Chemical Engineering; Graduate School of Engineering Science; Osaka University; Toyonaka Osaka 560-8531 Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University; Katsura Kyoto 615-8520 Japan
- Japan Science and Technology Agency (JST), CREST; Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|