1
|
Sakamoto M, Saitow KI. Fast, Economical, and Reproducible Sensing from a 2D Si Wire Array: Accurate Characterization by Single Wire Spectroscopy. Anal Chem 2022; 94:6672-6680. [PMID: 35475623 DOI: 10.1021/acs.analchem.1c05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silicon (Si) is promising as a field enhancement material because of its high abundance, low toxicity, and high refractive index. The field enhancement effect intensifies light-matter interactions, which improves photocatalysis, solar cell performance, and sensor sensitivity. To manufacture field enhancement materials on a production scale, the fabrication technique must be simple, cost-effective, fast, and highly reproducible and must produce a high enhancement factor (EF). Herein, we report on an economical and efficient fabrication method for a field enhancement substrate consisting of a two-dimensional Si wire array (2D-SiWA). This substrate was demonstrated as a fluorescence sensor with high sensitivity (EF > 200) and composed of a large area (6.0 mm2). In addition, single wire spectroscopy was used to identify very high reproducibility of the sensor sensitivity in regular regions (97%) and a mixture of regular and irregular regions (87%) of the 2D-SiWA. The large-area Si fluorescence sensor fabrication was cost-effective and rapid and was 50× less expensive, 20×faster, and 60,000×larger than the typical electron beam lithography method.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan
| | - Ken-Ichi Saitow
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.,Department of Materials Science, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.,Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
2
|
Sakamoto M, Terada S, Mizutani T, Saitow KI. Large Field Enhancement of Nanocoral Structures on Porous Si Synthesized from Rice Husks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1105-1113. [PMID: 33332080 DOI: 10.1021/acsami.0c14248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicon (Si) is a highly abundant, environmentally benign, and durable material and is the most popular semiconductor material; and it is used for the field enhancement of dielectric materials. Porous Si (PSi) exhibits high functionality due to its specific structure. However, the field enhancement of PSi has not been clarified sufficiently. Herein, we present the field enhancement of PSi by the fluorescence intensity enhancement of a dye molecule. The raw material used for producing PSi was rice husk, a biomass material. A nanocoral structure, consisting of spheroidal structures on the surface of PSi, was observed when PSi was subjected to chemical processes and pulsed laser melting, and it demonstrated large field enhancement with an enhancement factor (EF) of up to 545. Confocal microscopy was used for EF mapping of samples before and after laser melting, and the maps were superimposed on nanoscale scanning electron microscope images to highlight the EF effect as a function of microstructure. Nanocoral Si with high EF values were also evaluated by analyzing the porosity from gas adsorption measurements. Nanocoral Si was responsible for the high EF, according to thermodynamic calculations and agreement between experimental and calculation results as determined by Mie scattering theory.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shiho Terada
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tomoya Mizutani
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Ken-Ichi Saitow
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
3
|
Sakamoto M, Saitow KI. Field enhancement of MoS 2: visualization of the enhancement and effect of the number of layers. NANOSCALE 2018; 10:22215-22222. [PMID: 30383061 DOI: 10.1039/c8nr05650a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDCs) are layered semiconductor materials with unique electronic and optical properties. In the family of 2D TMDCs, molybdenum disulphide (MoS2) is a promising material for next-generation optoelectrical devices due to its high mobility and characteristic properties. The properties of 2D TMDCs, as well as device performances, can be further improved by a field enhancement effect. However, field enhancement has not been reported to date in the 2D TMDC family. Here, we show the field enhancement of MoS2 and its dependence on the number of layers (5-850 layers). Measurements of the fluorescence intensity of a dye solution, crystal violet, were used to visualize the enhancement factor (EF) for a MoS2 flake as a map. The EFs on the map were independently confirmed by x-y-z size measurements of the same MoS2 flake with an atomic force microscope. Furthermore, the obtained x-y-z sizes of the MoS2 flake were used for the finite-difference time-domain (FDTD) calculations to evaluate field enhancement. As a result, the MoS2 flake with a specific thickness (ca. 80 layers) gave the highest enhancement with EF = 100. Theoretical calculations based on the Mie scattering theory also confirmed the experimental EF mapping results, the dependence on the number of layers, and the component analysis of field enhancement. As another crucial point, large and small enhancement effects were attributed to the electric field and charge transfer effects, respectively, both of which depend on the number of layers. A transition region of these effects was indicated at around 300-400 layers.
Collapse
Affiliation(s)
- Masanori Sakamoto
- Department of Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan.
| | | |
Collapse
|
4
|
Matsumoto T, Maeda M, Kobayashi H. Photoluminescence Enhancement of Adsorbed Species on Si Nanoparticles. NANOSCALE RESEARCH LETTERS 2016; 11:7. [PMID: 26744147 PMCID: PMC4705079 DOI: 10.1186/s11671-015-1220-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/27/2015] [Indexed: 05/21/2023]
Abstract
We have fabricated Si nanoparticles from Si swarf using the beads milling method. The mode diameter of produced Si nanoparticles was between 4.8 and 5.2 nm. Si nanoparticles in hexane show photoluminescence (PL) spectra with peaks at 2.56, 2.73, 2.91, and 3.09 eV. The peaked PL spectra are attributed to the vibronic structure of adsorbed dimethylanthracene (DMA) impurity in hexane. The PL intensity of hexane with DMA increases by ~3000 times by adsorption on Si nanoparticles. The PL enhancement results from an increase in absorption probability of incident light by DMA caused by adsorption on the surface of Si nanoparticles.
Collapse
Affiliation(s)
- Taketoshi Matsumoto
- The Institute of Scientific and Industrial Research, Osaka University , 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Masanori Maeda
- The Institute of Scientific and Industrial Research, Osaka University , 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hikaru Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University , 8-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan.
| |
Collapse
|
5
|
Scaramuzza S, Badocco D, Pastore P, Coral DF, Fernández van Raap MB, Amendola V. Magnetically Assembled SERS Substrates Composed of Iron-Silver Nanoparticles Obtained by Laser Ablation in Liquid. Chemphyschem 2016; 18:1026-1034. [DOI: 10.1002/cphc.201600651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 01/20/2023]
Affiliation(s)
| | - Denis Badocco
- University of Padua; Department of Chemical Sciences; Padua Italy
| | - Paolo Pastore
- University of Padua; Department of Chemical Sciences; Padua Italy
| | - Diego F. Coral
- Physics Institute of La Plata (IFLP-CONICET); Physics Department; Faculty of Exact Sciences; National University of La Plata; La Plata Argentina
| | - Marcela B. Fernández van Raap
- Physics Institute of La Plata (IFLP-CONICET); Physics Department; Faculty of Exact Sciences; National University of La Plata; La Plata Argentina
| | | |
Collapse
|
6
|
Kajiya D, Imanishi M, Saitow KI. Solvation of Esters and Ketones in Supercritical CO2. J Phys Chem B 2016; 120:785-92. [PMID: 26741296 DOI: 10.1021/acs.jpcb.5b11740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrational Raman spectra for the C═O stretching modes of three esters with different functional groups (methyl, a single phenyl, and two phenyl groups) were measured in supercritical carbon dioxide (scCO2). The results were compared with Raman spectra for three ketones involving the same functional groups, measured at the same thermodynamic states in scCO2. The peak frequencies of the Raman spectra of these six solute molecules were analyzed by decomposition into the attractive and repulsive energy components, based on the perturbed hard-sphere theory. For all solute molecules, the attractive energy is greater than the repulsive energy. In particular, a significant difference in the attractive energies of the ester-CO2 and ketone-CO2 systems was observed when the methyl group is attached to the ester or ketone. This difference was significantly reduced in the solute systems with a single phenyl group and was completely absent in those with two phenyl groups. The optimized structures among the solutes and CO2 molecules based on quantum chemical calculations indicate that greater attractive energy is obtained for a system where the oxygen atom of the ester is solvated by CO2 molecules.
Collapse
Affiliation(s)
- Daisuke Kajiya
- Natural Science Center for Basic Research and Development (N-BARD) and ‡Department of Chemistry, Graduate School of Science, Hiroshima University , 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Masayoshi Imanishi
- Natural Science Center for Basic Research and Development (N-BARD) and ‡Department of Chemistry, Graduate School of Science, Hiroshima University , 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Ken-ichi Saitow
- Natural Science Center for Basic Research and Development (N-BARD) and ‡Department of Chemistry, Graduate School of Science, Hiroshima University , 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
7
|
Saitow KI, Suemori H, Tamamitsu H. Enhancement of fluorescence intensity by silicon particles and its size effect. Chem Commun (Camb) 2014; 50:1137-40. [DOI: 10.1039/c3cc46566g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|