1
|
Tran HK, Berkelbach TC. Vibrational heat-bath configuration interaction with semistochastic perturbation theory using harmonic oscillator or VSCF modals. J Chem Phys 2023; 159:194101. [PMID: 37965997 PMCID: PMC10653875 DOI: 10.1063/5.0172702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Vibrational heat-bath configuration interaction (VHCI)-a selected configuration interaction technique for vibrational structure theory-has recently been developed in two independent works [J. H. Fetherolf and T. C. Berkelbach, J. Chem. Phys. 154, 074104 (2021); A. U. Bhatty and K. R. Brorsen, Mol. Phys. 119, e1936250 (2021)], where it was shown to provide accuracy on par with the most accurate vibrational structure methods with a low computational cost. Here, we eliminate the memory bottleneck of the second-order perturbation theory correction using the same (semi)stochastic approach developed previously for electronic structure theory. This allows us to treat, in an unbiased manner, much larger perturbative spaces, which are necessary for high accuracy in large systems. Stochastic errors are easily controlled to be less than 1 cm-1. We also report two other developments: (i) we propose a new heat-bath criterion and an associated exact implicit sorting algorithm for potential energy surfaces expressible as a sum of products of one-dimensional potentials; (ii) we formulate VHCI to use a vibrational self-consistent field (VSCF) reference, as opposed to the harmonic oscillator reference configuration used in previous reports. Our tests are done with quartic and sextic force fields, for which we find that with VSCF, the minor improvements to accuracy are outweighed by the higher computational cost associated the matrix element evaluations. We expect VSCF-based VHCI to be important for more general potential representations, for which the harmonic oscillator basis function integrals are no longer analytic.
Collapse
Affiliation(s)
- Henry K. Tran
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
2
|
Hanson-Heine MWD. Static Electron Correlation in Anharmonic Molecular Vibrations: A Hybrid TAO-DFT Study. J Phys Chem A 2022; 126:7273-7282. [PMID: 36164938 PMCID: PMC9574917 DOI: 10.1021/acs.jpca.2c05881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hybrid thermally-assisted-occupation density functional theory is used to examine the effects of static electron correlation on the prediction of a benchmark set of experimentally observed molecular vibrational frequencies. The B3LYP and B97-1 thermally-assisted-occupation measure of static electron correlation is important for describing the vibrations of many of the molecules that make up several popular test sets of experimental data. Shifts are seen for known multireference systems and for many molecules containing atoms from the second row of the periodic table of elements. Several molecules only show significant shifts in select vibrational modes, and significant improvements are seen for the prediction of hydrogen stretching frequencies throughout the test set.
Collapse
|
3
|
Hanson-Heine MWD. Reduced Two-Electron Interactions in Anharmonic Molecular Vibrational Calculations Involving Localized Normal Coordinates. J Chem Theory Comput 2021; 17:4383-4391. [PMID: 34087068 DOI: 10.1021/acs.jctc.1c00314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Spatially localized vibrational normal mode coordinates are shown to reduce the importance of calculating the full set of two-electron terms in the molecular electronic Schrödinger equation. Electron correlation and dispersion interactions become less significant in (E,E)-1,3,5,7-octatetraene vibrational self-consistent field calculations when displacing remote atoms along multiple coordinates. Electron correlation interactions between spatially remote modes are also found to be less important compared to their corresponding uncorrelated interaction terms. Attenuation of the Coulomb operator indicates that the two-electron terms between remote electrons become less important for accurately describing the strongly contributing mode-coupling terms between sets of localized vibrational modes.
Collapse
|
4
|
Mathea T, Petrenko T, Rauhut G. VCI Calculations Based on Canonical and Localized Normal Coordinates for Non-Abelian Molecules: Accurate Assignment of the Vibrational Overtones of Allene. J Phys Chem A 2021; 125:990-998. [DOI: 10.1021/acs.jpca.0c10429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tina Mathea
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Taras Petrenko
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Madsen NK, Jensen AB, Hansen MB, Christiansen O. A general implementation of time-dependent vibrational coupled-cluster theory. J Chem Phys 2020; 153:234109. [PMID: 33353317 DOI: 10.1063/5.0034013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The first general excitation level implementation of the time-dependent vibrational coupled cluster (TDVCC) method introduced in a recent publication [J. Chem. Phys. 151, 154116 (2019)] is presented. The general framework developed for time-independent vibrational coupled cluster (VCC) calculations has been extended to the time-dependent context. This results in an efficient implementation of TDVCC with general coupling levels in the cluster operator and Hamiltonian. Thus, the convergence of the TDVCC[k] hierarchy toward the complete-space limit can be studied for any sum-of-product Hamiltonian. Furthermore, a scheme for including selected higher-order excitations for a subset of modes is introduced and studied numerically. Three different definitions of the TDVCC autocorrelation function (ACF) are introduced and analyzed in both theory and numerical experiments. Example calculations are presented for an array of systems including imidazole, formyl fluoride, formaldehyde, and a reduced-dimensionality bithiophene model. The results show that the TDVCC[k] hierarchy converges systematically toward the full-TDVCC limit and that the implementation allows accurate quantum-dynamics simulations of large systems to be performed. Specifically, the intramolecular vibrational-energy redistribution of the 21-dimensional imidazole molecule is studied in terms of the decay of the ACF. Furthermore, the importance of product separability in the definition of the ACF is highlighted when studying non-interacting subsystems.
Collapse
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | | | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Madsen NK, Hansen MB, Worth GA, Christiansen O. MR-MCTDH[n]: Flexible Configuration Spaces and Nonadiabatic Dynamics within the MCTDH[n] Framework. J Chem Theory Comput 2020; 16:4087-4097. [DOI: 10.1021/acs.jctc.0c00379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| | - Graham A. Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK−8000 Aarhus C, Denmark
| |
Collapse
|
7
|
Klinting EL, Lauvergnat D, Christiansen O. Vibrational Coupled Cluster Computations in Polyspherical Coordinates with the Exact Analytical Kinetic Energy Operator. J Chem Theory Comput 2020; 16:4505-4520. [DOI: 10.1021/acs.jctc.0c00261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - David Lauvergnat
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR8000, 91405 Orsay, France
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
8
|
Klinting EL, Christiansen O, König C. Toward Accurate Theoretical Vibrational Spectra: A Case Study for Maleimide. J Phys Chem A 2020; 124:2616-2627. [DOI: 10.1021/acs.jpca.9b11915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Carolin König
- Institute of Physical Chemistry, Kiel University, Max-Eyth-Straße 1, D-24118 Kiel, Germany
| |
Collapse
|
9
|
Madsen NK, Hansen MB, Worth GA, Christiansen O. Systematic and variational truncation of the configuration space in the multiconfiguration time-dependent Hartree method: The MCTDH[n] hierarchy. J Chem Phys 2020; 152:084101. [DOI: 10.1063/1.5142459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Niels Kristian Madsen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Mads Bøttger Hansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| | - Graham A. Worth
- Department of Chemistry, University College London, 20, Gordon St., WC1H 0AJ London, United Kingdom
| | - Ove Christiansen
- Department of Chemistry, University of Aarhus, Langelandsgade 140, DK–8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Ziegler B, Rauhut G. Localized Normal Coordinates in Accurate Vibrational Structure Calculations: Benchmarks for Small Molecules. J Chem Theory Comput 2019; 15:4187-4196. [DOI: 10.1021/acs.jctc.9b00381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin Ziegler
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Beć KB, Karczmit D, Kwaśniewicz M, Ozaki Y, Czarnecki MA. Overtones of νC≡N Vibration as a Probe of Structure of Liquid CH3CN, CD3CN, and CCl3CN: Combined Infrared, Near-Infrared, and Raman Spectroscopic Studies with Anharmonic Density Functional Theory Calculations. J Phys Chem A 2019; 123:4431-4442. [DOI: 10.1021/acs.jpca.9b02170] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Krzysztof Bernard Beć
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Daniel Karczmit
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Michał Kwaśniewicz
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | |
Collapse
|
12
|
Sibert EL. Modeling vibrational anharmonicity in infrared spectra of high frequency vibrations of polyatomic molecules. J Chem Phys 2019; 150:090901. [DOI: 10.1063/1.5079626] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edwin L. Sibert
- Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
13
|
Beć KB, Huck CW. Breakthrough Potential in Near-Infrared Spectroscopy: Spectra Simulation. A Review of Recent Developments. Front Chem 2019; 7:48. [PMID: 30854368 PMCID: PMC6396078 DOI: 10.3389/fchem.2019.00048] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/18/2019] [Indexed: 11/29/2022] Open
Abstract
Near-infrared (12,500–4,000 cm−1; 800–2,500 nm) spectroscopy is the hallmark for one of the most rapidly advancing analytical techniques over the last few decades. Although it is mainly recognized as an analytical tool, near-infrared spectroscopy has also contributed significantly to physical chemistry, e.g., by delivering invaluable data on the anharmonic nature of molecular vibrations or peculiarities of intermolecular interactions. In all these contexts, a major barrier in the form of an intrinsic complexity of near-infrared spectra has been encountered. A large number of overlapping vibrational contributions influenced by anharmonic effects create complex patterns of spectral dependencies, in many cases hindering our comprehension of near-infrared spectra. Quantum mechanical calculations commonly serve as a major support to infrared and Raman studies; conversely, near-infrared spectroscopy has long been hindered in this regard due to practical limitations. Advances in anharmonic theories in hyphenation with ever-growing computer technology have enabled feasible theoretical near-infrared spectroscopy in recent times. Accordingly, a growing number of quantum mechanical investigations aimed at near-infrared region has been witnessed. The present review article summarizes these most recent accomplishments in the emerging field. Applications of generalized approaches, such as vibrational self-consistent field and vibrational second order perturbation theories as well as their derivatives, and dense grid-based studies of vibrational potential, are overviewed. Basic and applied studies are discussed, with special attention paid to the ones which aim at improving analytical spectroscopy. A remarkable potential arises from the growing applicability of anharmonic computations to solving the problems which arise in both basic and analytical near-infrared spectroscopy. This review highlights an increased value of quantum mechanical calculations to near-infrared spectroscopy in relation to other kinds of vibrational spectroscopy.
Collapse
Affiliation(s)
- Krzysztof B Beć
- Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | - Christian W Huck
- Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| |
Collapse
|
14
|
Ziegler B, Rauhut G. Rigorous use of symmetry within the construction of multidimensional potential energy surfaces. J Chem Phys 2018; 149:164110. [DOI: 10.1063/1.5047912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Benjamin Ziegler
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Guntram Rauhut
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Grabska J, Beć KB, Ishigaki M, Huck CW, Ozaki Y. NIR Spectra Simulations by Anharmonic DFT-Saturated and Unsaturated Long-Chain Fatty Acids. J Phys Chem B 2018; 122:6931-6944. [DOI: 10.1021/acs.jpcb.8b04862] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Justyna Grabska
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Krzysztof B. Beć
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Mika Ishigaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innrain 80-82, 6020 Innsbruck, Austria
| | - Yukihiro Ozaki
- Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
16
|
Klinting EL, Thomsen B, Godtliebsen IH, Christiansen O. Employing general fit-bases for construction of potential energy surfaces with an adaptive density-guided approach. J Chem Phys 2018; 148:064113. [DOI: 10.1063/1.5016259] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Bo Thomsen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Hanson-Heine MWD. Reduced Basis Set Dependence in Anharmonic Frequency Calculations Involving Localized Coordinates. J Chem Theory Comput 2018; 14:1277-1285. [PMID: 29385338 DOI: 10.1021/acs.jctc.7b01075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Localized normal coordinates are known to be effective in speeding up anharmonic frequency calculations by reducing the complexity of the nuclear Hamiltonian and wave function. Displacing atoms in localized coordinates can also cause relatively small changes in the electronic structure, which can be exploited for further computational efficiency improvements during ab initio electronic structure calculations of the potential energy surface by reducing the electronic basis set dependence. Three different schemes for reducing the basis set dependence have been investigated in this work. These include combining localized coordinate schemes with general mixed basis sets, distance based force-field reductions, and using coordinate specific basis sets. The importance of accurately describing electronic interactions is found to diminish both for multicoordinate terms involving the displacement of remote atoms and when describing the interactions between more remote atoms within specific coordinates.
Collapse
|
18
|
Battocchio G, Madsen NK, Christiansen O. Density matrices and iterative natural modals in vibrational structure theory. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1243263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Zimmerman PM, Smereka P. Optimizing Vibrational Coordinates To Modulate Intermode Coupling. J Chem Theory Comput 2016; 12:1883-91. [PMID: 26914536 DOI: 10.1021/acs.jctc.5b01168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The choice of coordinate system strongly affects the convergence properties of vibrational structure computations. Two methods for efficient generation of improved vibrational coordinates are presented and justified by analysis of a model anharmonic two-mode Hessian and numerical computations on polyatomic molecules. To produce optimal coordinates, metrics which quantify off-diagonal couplings over a grid of Hessian matrices are minimized through unitary rotations of the vibrational basis. The first proposed metric minimizes the total squared off-diagonal coupling, and the second minimizes the total squared change in off-diagonal coupling. In this procedure certain anharmonic modes tend to localize, for example X-H stretches. The proposed methods do not rely on prior fitting of the potential energy, vibrational structure computations, or localization metrics, so they are unique from previous vibrational coordinate generation algorithms and are generally applicable to polyatomic molecules. Fitting the potential to the approximate n-mode representation in the optimized bases for all-trans polyenes shows that off-diagonal anharmonic couplings are substantially reduced by the new choices of coordinate system. Convergence of vibrational energies is examined in detail for ethylene, and it is shown that coupling-optimized modes converge in vibrational configuration interaction computations to within 1 cm(-1) using only 3-mode couplings, where normal modes require 4-mode couplings for convergence. Comparison of the vibrational configuration interaction convergence with respect to excitation level for the two proposed metrics shows that minimization of the total off-diagonal coupling is most effective for low-cost vibrational structure computations.
Collapse
Affiliation(s)
- Paul M Zimmerman
- Department of Chemistry and ‡Department of Mathematics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Peter Smereka
- Department of Chemistry and ‡Department of Mathematics, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Klinting EL, König C, Christiansen O. Hybrid Optimized and Localized Vibrational Coordinates. J Phys Chem A 2015; 119:11007-21. [DOI: 10.1021/acs.jpca.5b08496] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Carolin König
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Sibaev M, Crittenden DL. The PyPES library of high quality semi-global potential energy surfaces. J Comput Chem 2015; 36:2200-7. [DOI: 10.1002/jcc.24192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/19/2015] [Accepted: 08/10/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Marat Sibaev
- Department of Chemistry; University of Canterbury; Christchurch New Zealand
| | | |
Collapse
|
22
|
Ramakrishnan R, Rauhut G. Semi-quartic force fields retrieved from multi-mode expansions: Accuracy, scaling behavior, and approximations. J Chem Phys 2015; 142:154118. [DOI: 10.1063/1.4918587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Raghunathan Ramakrishnan
- Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Guntram Rauhut
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
23
|
König C, Christiansen O. Automatic determination of important mode–mode correlations in many-mode vibrational wave functions. J Chem Phys 2015; 142:144115. [DOI: 10.1063/1.4916518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Carolin König
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|