1
|
Pujahari SR, Purusottam RN, Mali PS, Sarkar S, Khaneja N, Vajpai N, Kumar A. Exploring the Higher Order Structure and Conformational Transitions in Insulin Microcrystalline Biopharmaceuticals by Proton-Detected Solid-State Nuclear Magnetic Resonance at Natural Abundance. Anal Chem 2024; 96:4756-4763. [PMID: 38326990 DOI: 10.1021/acs.analchem.3c04040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The integrity of a higher order structure (HOS) is an essential requirement to ensure the efficacy, stability, and safety of protein therapeutics. Solution-state nuclear magnetic resonance (NMR) occupies a unique niche as one of the most promising methods to access atomic-level structural information on soluble biopharmaceutical formulations. Another major class of drugs is poorly soluble, such as microcrystalline suspensions, which poses significant challenges for the characterization of the active ingredient in its native state. Here, we have demonstrated a solid-state NMR method for HOS characterization of biopharmaceutical suspensions employing a selective excitation scheme under fast magic angle spinning (MAS). The applicability of the method is shown on commercial insulin suspensions at natural isotopic abundance. Selective excitation aided with proton detection and non-uniform sampling (NUS) provides improved sensitivity and resolution. The enhanced resolution enabled us to demonstrate the first experimental evidence of a phenol-escaping pathway in insulin, leading to conformational transitions to different hexameric states. This approach has the potential to serve as a valuable means for meticulously examining microcrystalline biopharmaceutical suspensions, which was previously not attainable in their native formulation states and can be seamlessly extended to other classes of biopharmaceuticals such as mAbs and other microcrystalline proteins.
Collapse
Affiliation(s)
- Soumya Ranjan Pujahari
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Rudra N Purusottam
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Pramod S Mali
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Sambeda Sarkar
- System and Control Engineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Navin Khaneja
- System and Control Engineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| | - Navratna Vajpai
- Biocon Biologics Limited, Biocon SEZ, Plot No. 2 & 3, Phase IV-B.I.A, Bommasandra-Jigani Link Road, Bangalore 560099, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai Mumbai 400076, India
| |
Collapse
|
2
|
Simion A, Schubeis T, Le Marchand T, Vasilescu M, Pintacuda G, Lesage A, Filip C. Heteronuclear decoupling with Rotor-Synchronized Phase-Alternated Cycles. J Chem Phys 2022; 157:014202. [DOI: 10.1063/5.0098135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new heteronuclear decoupling pulse sequence is introduced, dubbed ROtor-Synchronized Phase-Alternated Cycles (ROSPAC). It is based on a partial refocusing of the coherences (spin operator products, or cross-terms)1,2 responsible for transverse spin-polarization dephasing, on the irradiation of a large pattern of radio-frequencies, and on a significant minimization of the cross-effects implying 1H chemical-shift anisotropy. Decoupling efficiency is analyzed by numerical simulations and experiments, and compared to that of established decoupling sequences (swept-frequency TPPM, TPPM, SPINAL, rCWApa, and RS-HEPT). It was found that ROSPAC offers good 1H offset robustness for a large range of chemical shifts and low radio-frequency (RF) powers, and performs very well in the ultra-fast MAS regime, where it is almost independent from RF power and permits it to avoid rotary-resonance recoupling conditions ( ). It has the advantage that only the pulse lengths require optimization, and has a low duty cycle in the pulsed decoupling regime. The efficiency of the decoupling sequence is demonstrated on a model microcrystalline sample of the model protein domain GB1 at 100 kHz MAS at 18.8 T.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Lesage
- Laboratoire de Stereochimie, Ecole Normale Superieure, FRANCE
| | - Claudiu Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, Romania
| |
Collapse
|
3
|
Martin RW, Kelly JE, Kelz JI. Advances in instrumentation and methodology for solid-state NMR of biological assemblies. J Struct Biol 2018; 206:73-89. [PMID: 30205196 DOI: 10.1016/j.jsb.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 01/11/2023]
Abstract
Many advances in instrumentation and methodology have furthered the use of solid-state NMR as a technique for determining the structures and studying the dynamics of molecules involved in complex biological assemblies. Solid-state NMR does not require large crystals, has no inherent size limit, and with appropriate isotopic labeling schemes, supports solving one component of a complex assembly at a time. It is complementary to cryo-EM, in that it provides local, atomic-level detail that can be modeled into larger-scale structures. This review focuses on the development of high-field MAS instrumentation and methodology; including probe design, benchmarking strategies, labeling schemes, and experiments that enable the use of quadrupolar nuclei in biomolecular NMR. Current challenges facing solid-state NMR of biological assemblies and new directions in this dynamic research area are also discussed.
Collapse
Affiliation(s)
- Rachel W Martin
- Department of Chemistry, University of California, Irvine 92697-2025, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, United States.
| | - John E Kelly
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| | - Jessica I Kelz
- Department of Chemistry, University of California, Irvine 92697-2025, United States
| |
Collapse
|
4
|
Nagashima H, Trébosc J, Lafon O, Pourpoint F, Paluch P, Potrzebowski MJ, Amoureux JP. Imaging the spatial distribution of radiofrequency field, sample and temperature in MAS NMR rotor. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:137-142. [PMID: 28867557 DOI: 10.1016/j.ssnmr.2017.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/06/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
We investigate using nutation experiments the spatial distribution of radiofrequency (rf) field, sample, temperature and cross-polarization transfer efficiency in 1.3 mm rotor. First, two-dimensional (2D) 1H nutation experiments on silicone thin cylinders in the presence of B0 field gradient generated by shim coils are used to image the spatial distribution of rf field inside the rotor. These experiments show that the rf field is asymmetrical with respect to the center of the rotor. Moreover, they show the large inhomogeneity that still remains across the sample when using spacers, and that even in this case, the rf-field close to the drive cap is decreased to ca. only 20% of its maximum value. Such 2D nutation experiment in the presence of B0 field gradient are also employed to demonstrate the migration of adamantane sample from the center of the rotor to its ends during Magic-Angle Spinning (MAS). Furthermore, 2D 1H nutation experiments on nickelocene exhibiting temperature-dependent isotropic chemical shift provides insights into the temperature distribution inside rotor. Finally three-dimensional (3D) 1H → 13C Cross-Polarization under MAS (CPMAS) nutation experiment indicates that only nuclei subject to the largest rf field contribute to the CPMAS transfer, when using rf field of constant amplitude on both channels. Such high selectivity allows the determination of accurate dipolar coupling constants in the Cross-Polarization with Variable Contact (CP-VC) experiment under fast MAS, at the expense of low sensitivity. Conversely when using ramped-amplitude on the 1H channel during the CPMAS transfer, nuclei subject to smaller rf field contributes to the transfer, which increases the sensitivity of CPMAS experiment but does not allow an accurate determination of dipolar coupling constants using CP-VC experiment.
Collapse
Affiliation(s)
- Hiroki Nagashima
- Univ. Lille, CNRS, ENSCL, UMR 8181, UCCS, Unité de Catalyse et de Chimie du Solide, 59000 Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, ENSCL, UMR 8181, UCCS, Unité de Catalyse et de Chimie du Solide, 59000 Lille, France
| | - Olivier Lafon
- Univ. Lille, CNRS, ENSCL, UMR 8181, UCCS, Unité de Catalyse et de Chimie du Solide, 59000 Lille, France; Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, ENSCL, UMR 8181, UCCS, Unité de Catalyse et de Chimie du Solide, 59000 Lille, France
| | - Piotr Paluch
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, 90-363 Lodz, Poland
| | - Marek J Potrzebowski
- Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, 90-363 Lodz, Poland
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, ENSCL, UMR 8181, UCCS, Unité de Catalyse et de Chimie du Solide, 59000 Lille, France; Bruker Biospin, 34, rue de l'industrie, 67166 Wissembourg, France.
| |
Collapse
|
5
|
Tan KO, Agarwal V, Meier BH, Ernst M. A generalized theoretical framework for the description of spin decoupling in solid-state MAS NMR: Offset effect on decoupling performance. J Chem Phys 2017; 145:094201. [PMID: 27608994 DOI: 10.1063/1.4961909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a generalized theoretical framework that allows the approximate but rapid analysis of residual couplings of arbitrary decoupling sequences in solid-state NMR under magic-angle spinning conditions. It is a generalization of the tri-modal Floquet analysis of TPPM decoupling [Scholz et al., J. Chem. Phys. 130, 114510 (2009)] where three characteristic frequencies are used to describe the pulse sequence. Such an approach can be used to describe arbitrary periodic decoupling sequences that differ only in the magnitude of the Fourier coefficients of the interaction-frame transformation. It allows a ∼100 times faster calculation of second-order residual couplings as a function of pulse sequence parameters than full spin-dynamics simulations. By comparing the theoretical calculations with full numerical simulations, we show the potential of the new approach to examine the performance of decoupling sequences. We exemplify the usefulness of this framework by analyzing the performance of commonly used high-power decoupling sequences and low-power decoupling sequences such as amplitude-modulated XiX (AM-XiX) and its super-cycled variant SC-AM-XiX. In addition, the effect of chemical-shift offset is examined for both high- and low-power decoupling sequences. The results show that the cross-terms between the dipolar couplings are the main contributions to the line broadening when offset is present. We also show that the SC-AM-XIX shows a better offset compensation.
Collapse
Affiliation(s)
- Kong Ooi Tan
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Vipin Agarwal
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
6
|
Equbal A, Leskes M, Nielsen NC, Madhu PK, Vega S. Relative merits of rCW(A) and XiX heteronuclear spin decoupling in solid-state magic-angle-spinning NMR spectroscopy: A bimodal Floquet analysis. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:55-64. [PMID: 26773527 DOI: 10.1016/j.jmr.2015.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/19/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
We present a bimodal Floquet analysis of the recently introduced refocused continuous wave (rCW) solid-state NMR heteronuclear dipolar decoupling method and compare it with the similar looking X-inverse X (XiX) scheme. The description is formulated in the rf interaction frame and is valid for both finite and ideal π pulse rCW irradiation that forms the refocusing element in the rCW scheme. The effective heteronuclear dipolar coupling Hamiltonian up to first order is described. The analysis delineates the difference between the two sequences to different orders of their Hamiltonians for both diagonal and off-diagonal parts. All the resonance conditions observed in experiments and simulations have been characterised and their influence on residual line broadening is highlighted. The theoretical comparison substantiates the numerical simulations and experimental results to a large extent.
Collapse
Affiliation(s)
- Asif Equbal
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Michal Leskes
- Weizmann Institute of Science, Department of Materials and Interfaces, Rehovot, Israel.
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark.
| | - P K Madhu
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India; TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India.
| | - Shimon Vega
- Weizmann Institute of Science, Department of Chemical Physics, Rehovot, Israel.
| |
Collapse
|
7
|
Equbal A, Bjerring M, Sharma K, Madhu P, Nielsen NC. Heteronuclear decoupling in MAS NMR in the intermediate to fast sample spinning regime. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Purusottam RN, Bodenhausen G, Tekely P. Effects of inherent rf field inhomogeneity on heteronuclear decoupling in solid-state NMR. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.06.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|