Alipour M, Karimi N. Dissecting the accountability of parameterized and parameter-free single-hybrid and double-hybrid functionals for photophysical properties of TADF-based OLEDs.
J Chem Phys 2017. [PMID:
28641443 DOI:
10.1063/1.4986777]
[Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) emitters are an attractive category of materials that have witnessed a booming development in recent years. In the present contribution, we scrutinize the accountability of parameterized and parameter-free single-hybrid (SH) and double-hybrid (DH) functionals through the two formalisms, full time-dependent density functional theory (TD-DFT) and Tamm-Dancoff approximation (TDA), for the estimation of photophysical properties like absorption energy, emission energy, zero-zero transition energy, and singlet-triplet energy splitting of TADF molecules. According to our detailed analyses on the performance of SHs based on TD-DFT and TDA, the TDA-based parameter-free SH functionals, PBE0 and TPSS0, with one-third of exact-like exchange turned out to be the best performers in comparison to other functionals from various rungs to reproduce the experimental data of the benchmarked set. Such affordable SH approximations can thus be employed to predict and design the TADF molecules with low singlet-triplet energy gaps for OLED applications. From another perspective, considering this point that both the nonlocal exchange and correlation are essential for a more reliable description of large charge-transfer excited states, applicability of the functionals incorporating these terms, namely, parameterized and parameter-free DHs, has also been evaluated. Perusing the role of exact-like exchange, perturbative-like correlation, solvent effects, and other related factors, we find that the parameterized functionals B2π-PLYP and B2GP-PLYP and the parameter-free models PBE-CIDH and PBE-QIDH have respectable performance with respect to others. Lastly, besides the recommendation of reliable computational protocols for the purpose, hopefully this study can pave the way toward further developments of other SHs and DHs for theoretical explorations in the field of OLEDs technology.
Collapse