1
|
Snyder DT, Harvey SR, Wysocki VH. Surface-induced Dissociation Mass Spectrometry as a Structural Biology Tool. Chem Rev 2022; 122:7442-7487. [PMID: 34726898 PMCID: PMC9282826 DOI: 10.1021/acs.chemrev.1c00309] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Native mass spectrometry (nMS) is evolving into a workhorse for structural biology. The plethora of online and offline preparation, separation, and purification methods as well as numerous ionization techniques combined with powerful new hybrid ion mobility and mass spectrometry systems has illustrated the great potential of nMS for structural biology. Fundamental to the progression of nMS has been the development of novel activation methods for dissociating proteins and protein complexes to deduce primary, secondary, tertiary, and quaternary structure through the combined use of multiple MS/MS technologies. This review highlights the key features and advantages of surface collisions (surface-induced dissociation, SID) for probing the connectivity of subunits within protein and nucleoprotein complexes and, in particular, for solving protein structure in conjunction with complementary techniques such as cryo-EM and computational modeling. Several case studies highlight the significant role SID, and more generally nMS, will play in structural elucidation of biological assemblies in the future as the technology becomes more widely adopted. Cases are presented where SID agrees with solved crystal or cryoEM structures or provides connectivity maps that are otherwise inaccessible by "gold standard" structural biology techniques.
Collapse
Affiliation(s)
- Dalton T. Snyder
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
| | - Sophie R. Harvey
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Vicki H. Wysocki
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
2
|
Lucas K, Chen A, Schubmehl M, Kolonko KJ, Barnes GL. Exploring the Effects of Methylation on the CID of Protonated Lysine: A Combined Experimental and Computational Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2675-2684. [PMID: 34677967 DOI: 10.1021/jasms.1c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report the results of experiments, simulations, and DFT calculations that focus on describing the reaction dynamics observed within the collision-induced dissociation of l-lysine-H+ and its side-chain methylated analogues, Nε-methyl-l-lysine-H+ (Me1-lysine-H+), Nε,Nε-dimethyl-l-lysine-H+ (Me2-lysine-H+), and Nε,Nε,Nε-trimethyl-l-lysine-H+ (Me3-lysine-H+). The major pathways observed in the experimental measurements were m/z 130 and 84, with the former dominant at low collision energies and the latter at intermediate to high collision energies. The m/z 130 peak corresponds to loss of N(CH3)nH3-n, while m/z 84 has the additional loss of H2CO2 likely in the form of H2O + CO. Within the time frame of the direct dynamics simulations, m/z 130 and 101 were the most populous peaks, with the latter identified as an intermediate to m/z 84. The simulations allowed for the determination of several reaction pathways that result in these products. A graph theory analysis enabled the elucidation of the significant structures that compose each peak. Methylation results in the preferential loss of the side-chain amide group and a reduction of cyclic structures within the m/z 84 peak population in simulations.
Collapse
Affiliation(s)
- Kenneth Lucas
- Department of Chemistry and Biochemistry, Siena College, 515 Loudon Road, Loudonville, New York 12211, United States
| | - Amy Chen
- Department of Chemistry and Biochemistry, Siena College, 515 Loudon Road, Loudonville, New York 12211, United States
| | - Megan Schubmehl
- Department of Chemistry and Biochemistry, Siena College, 515 Loudon Road, Loudonville, New York 12211, United States
| | - Kristopher J Kolonko
- Stewart's Advanced Instrumentation and Technology (SAInT) Center, Siena College, 515 Loudon Road, Loudonville, New York 12211, United States
| | - George L Barnes
- Department of Chemistry and Biochemistry, Siena College, 515 Loudon Road, Loudonville, New York 12211, United States
| |
Collapse
|
3
|
Fast fragmentation during surface-induced dissociation: An examination of peptide size and structure. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Lucas K, Barnes GL. Modeling the Effects of O-Sulfonation on the CID of Serine. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1114-1122. [PMID: 32202776 DOI: 10.1021/jasms.0c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the results of direct dynamics simulations and DFT calculations aimed at elucidating the effect of O-sulfonation on the collision-induced dissociation for serine. Toward this end, direct dynamics simulations of both serine and sulfoserine were performed at multiple collision energies and theoretical mass spectra obtained. Comparisons to experimental results are favorable for both systems. Peaks related to the sulfo group are identified and the reaction dynamics explored. In particular, three significant peaks (m/z 106, 88, and 81) seen in the theoretical mass spectrum directly related to the sulfo group are analyzed as well as major peaks shared by both systems. Our analysis shows that the m/z 106 peaks result from intramolecular rearrangements, intermolecular proton transfer among complexes composed of initial fragmentation products, and at high energy side-chain fragmentation. The m/z 88 peak was found to contain multiple constitutional isomers, including a previously unconsidered, low energy structure. It was also observed that the RM1 semiempirical method was not able to obtain all of the major peaks seen in experimens for sulfoserine. In contrast, PM6 did obtain all major experimental peaks.
Collapse
Affiliation(s)
- Kenneth Lucas
- Department of Chemistry and Biochemistry Siena College 515 Loudon Road Loudonville, New York 12211, United States
| | - George L Barnes
- Department of Chemistry and Biochemistry Siena College 515 Loudon Road Loudonville, New York 12211, United States
| |
Collapse
|
5
|
Gu M, Zhang J, Hase WL, Yang L. Direct Dynamics Simulations of the Thermal Fragmentation of a Protonated Peptide Containing Arginine. ACS OMEGA 2020; 5:1463-1471. [PMID: 32010819 PMCID: PMC6990424 DOI: 10.1021/acsomega.9b03091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/25/2019] [Indexed: 05/31/2023]
Abstract
Arginine has significant effects on fragmentation patterns of the protonated peptide due to its high basicity guanidine tail. In this article, thermal dissociation of the singly protonated glycine-arginine dipeptide (GR-H+) was investigated by performing direct dynamics simulations at different vibrational temperatures of 2000-3500 K. Fourteen principal fragmentation mechanisms containing side-chain and backbone fragmentation were found and discussed in detail. The mechanism involving partial or complete loss of a guanidino group dominates side-chain fragmentation, while backbone fragmentation mainly involves the three cleavage sites of a1-x1+, a2+-x0, and b1-y1+. Fragmentation patterns for primary dissociation have been compared with experimental results, and the peak that was not identified by the experiment has been assigned by our simulation. Kinetic parameters for GR-H+ unimolecular dissociation may be determined by direct dynamics simulations, which are helpful in exploring the complex biomolecules.
Collapse
Affiliation(s)
- Meng Gu
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiaxu Zhang
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - William L. Hase
- Department
of Chemistry and Biochemistry, Texas Tech
University, Lubbock, Texas 79401, United States
| | - Li Yang
- MIIT
Key Laboratory of Critical Materials Technology for New Energy Conversion
and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
6
|
Frederickson D, McDonough M, Barnes GL. A Computational Comparison of Soft Landing of α-Helical vs Globular Peptides. J Phys Chem B 2018; 122:9549-9554. [DOI: 10.1021/acs.jpcb.8b06232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Danielle Frederickson
- Department of Chemistry and Biochemistry, Siena College, 515 Loudon Road, Loudonville, New York 12211, United States
| | - Meghan McDonough
- Department of Chemistry and Biochemistry, Siena College, 515 Loudon Road, Loudonville, New York 12211, United States
| | - George L. Barnes
- Department of Chemistry and Biochemistry, Siena College, 515 Loudon Road, Loudonville, New York 12211, United States
| |
Collapse
|
7
|
Pratihar S, Ma X, Homayoon Z, Barnes GL, Hase WL. Direct Chemical Dynamics Simulations. J Am Chem Soc 2017; 139:3570-3590. [DOI: 10.1021/jacs.6b12017] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Subha Pratihar
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Xinyou Ma
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Zahra Homayoon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - George L. Barnes
- Department
of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - William L. Hase
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
8
|
Homayoon Z, Pratihar S, Dratz E, Snider R, Spezia R, Barnes GL, Macaluso V, Martin Somer A, Hase WL. Model Simulations of the Thermal Dissociation of the TIK(H+)2 Tripeptide: Mechanisms and Kinetic Parameters. J Phys Chem A 2016; 120:8211-8227. [DOI: 10.1021/acs.jpca.6b05884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zahra Homayoon
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Subha Pratihar
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | | | | | - Riccardo Spezia
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry Val d’Essonne UMR 8587 CNRS-CEA-UEVE, Bd. F. Mitterrand, 91025 Evry Cedex, France
| | - George L. Barnes
- Department
of Chemistry and Biochemistry, Siena College, Loudonville, New York 12211, United States
| | - Veronica Macaluso
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry Val d’Essonne UMR 8587 CNRS-CEA-UEVE, Bd. F. Mitterrand, 91025 Evry Cedex, France
| | - Ana Martin Somer
- Laboratoire
Analyse et Modélisation pour la Biologie et l’Environnement, Université d’Evry Val d’Essonne UMR 8587 CNRS-CEA-UEVE, Bd. F. Mitterrand, 91025 Evry Cedex, France
| | - William L. Hase
- Department
of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
9
|
Pratihar S, Barnes GL, Hase WL. Chemical dynamics simulations of energy transfer, surface-induced dissociation, soft-landing, and reactive-landing in collisions of protonated peptide ions with organic surfaces. Chem Soc Rev 2016; 45:3595-608. [DOI: 10.1039/c5cs00482a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different simulation approaches like MM, QM + MM, and QM/MM, were used to study surface-induced dissociation, soft-landing, and reactive-landing for the peptide-H+ + surface collisions.
Collapse
Affiliation(s)
- Subha Pratihar
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - George L. Barnes
- Department of Chemistry and Biochemistry
- Siena College
- Loudonville
- USA
| | - William L. Hase
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|