1
|
Simion A, Schubeis T, Le Marchand T, Vasilescu M, Pintacuda G, Lesage A, Filip C. Heteronuclear decoupling with Rotor-Synchronized Phase-Alternated Cycles. J Chem Phys 2022; 157:014202. [DOI: 10.1063/5.0098135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A new heteronuclear decoupling pulse sequence is introduced, dubbed ROtor-Synchronized Phase-Alternated Cycles (ROSPAC). It is based on a partial refocusing of the coherences (spin operator products, or cross-terms)1,2 responsible for transverse spin-polarization dephasing, on the irradiation of a large pattern of radio-frequencies, and on a significant minimization of the cross-effects implying 1H chemical-shift anisotropy. Decoupling efficiency is analyzed by numerical simulations and experiments, and compared to that of established decoupling sequences (swept-frequency TPPM, TPPM, SPINAL, rCWApa, and RS-HEPT). It was found that ROSPAC offers good 1H offset robustness for a large range of chemical shifts and low radio-frequency (RF) powers, and performs very well in the ultra-fast MAS regime, where it is almost independent from RF power and permits it to avoid rotary-resonance recoupling conditions ( ). It has the advantage that only the pulse lengths require optimization, and has a low duty cycle in the pulsed decoupling regime. The efficiency of the decoupling sequence is demonstrated on a model microcrystalline sample of the model protein domain GB1 at 100 kHz MAS at 18.8 T.
Collapse
Affiliation(s)
| | | | | | | | | | - Anne Lesage
- Laboratoire de Stereochimie, Ecole Normale Superieure, FRANCE
| | - Claudiu Filip
- National Institute for Research and Development of Isotopic and Molecular Technologies, Romania
| |
Collapse
|
2
|
Garg R, Pandey MK, Ramachandran R. Bimodal Floquet theory of phase-modulated heteronuclear decoupling experiments in solid-state NMR spectroscopy. J Chem Phys 2021; 155:104102. [PMID: 34525823 DOI: 10.1063/5.0061883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A prescription based on bimodal Floquet theory is proposed to describe the nuances of phase-modulated supercycled decoupling experiments in solids. The frequency dependent interaction frames relevant to a particular supercycle are identified to facilitate faster convergence of perturbation corrections to the derived effective Hamiltonians. In contrast to silico-based methods, the proposed analytic method offers an attractive platform for faster optimization of experiments in solids. Additionally, the relevance of supercycling at ultrafast spinning conditions is also discussed.
Collapse
Affiliation(s)
- Rajat Garg
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India
| | - Manoj Kumar Pandey
- Department of Chemistry, Indian Institute of Technology (IIT) Ropar, P.O. Box-140001, Rupnagar, Punjab, India
| | - Ramesh Ramachandran
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India
| |
Collapse
|
3
|
Sharma K, Equbal A, Nielsen NC, Madhu PK. A unified heteronuclear decoupling picture in solid-state NMR under low radio-frequency amplitude and fast magic-angle-spinning frequency regime. J Chem Phys 2019; 150:144201. [PMID: 30981235 DOI: 10.1063/1.5082352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heteronuclear spin decoupling is a highly important component of solid-state NMR experiments to remove undesired coupling interactions between unlike spins for spectral resolution. Recently, experiments using a unification strategy of standard decoupling schemes were presented for high radio-frequency (RF) amplitudes and slow-intermediate magic-angle-spinning (MAS) frequencies, in the pursuit of deeper understanding of spin decoupling under phase-modulated RF irradiation [A. Equbal et al., J. Chem. Phys. 142, 184201 (2015)]. The approach, unified two-pulse heteronuclear decoupling (UTPD), incorporates the simultaneous time- and phase-modulation strategies, commonly used in solid-state NMR. Here, the UTPD based decoupling scheme is extended to the experimentally increasingly important regime of low RF amplitudes and fast MAS frequencies. The unified decoupling approach becomes increasingly effective in identifying the deleterious dipole-dipole and, in particular, J recoupling conditions which become critical for the low-amplitude RF regime. This is because J coupling is isotropic and therefore not averaged out by sample spinning unlike the anisotropic dipole-dipole coupling. Numerical simulations and analytic theory are used to understand the effects of various nuclear spin interactions on the decoupling performance of UTPD, in particular, the crucial difference between the low-phase and high-phase UTPD conditions with respect to J coupling. In the UTPD scheme, when the cycle-frequency of the pulse-sequence is comparable to the RF nutation frequency, the existence of a non-zero effective rotation in the basic two-pulse scheme becomes an essential feature for the efficient and robust averaging out of the scalar J coupling. This broad viewpoint is expected to bring different optimum low-power decoupling pulse schemes under a common footing.
Collapse
Affiliation(s)
- Kshama Sharma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500 107, India
| | - Asif Equbal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500 107, India
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500 107, India
| |
Collapse
|
4
|
Equbal A, Shankar R, Leskes M, Vega S, Nielsen NC, Madhu PK. Significance of symmetry in the nuclear spin Hamiltonian for efficient heteronuclear dipolar decoupling in solid-state NMR: A Floquet description of supercycled rCW schemes. J Chem Phys 2017; 146:104202. [PMID: 28298092 DOI: 10.1063/1.4977738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Symmetry plays an important role in the retention or annihilation of a desired interaction Hamiltonian in NMR experiments. Here, we explore the role of symmetry in the radio-frequency interaction frame Hamiltonian of the refocused-continuous-wave (rCW) pulse scheme that leads to efficient 1H heteronuclear decoupling in solid-state NMR. It is demonstrated that anti-periodic symmetry of single-spin operators (Ix, Iy, Iz) in the interaction frame can lead to complete annihilation of the 1H-1H homonuclear dipolar coupling effects that induce line broadening in solid-state NMR experiments. This symmetry also plays a critical role in cancelling or minimizing the effect of 1H chemical-shift anisotropy in the effective Hamiltonian. An analytical description based on Floquet theory is presented here along with experimental evidences to understand the decoupling efficiency of supercycled (concatenated) rCW scheme.
Collapse
Affiliation(s)
- Asif Equbal
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ravi Shankar
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Michal Leskes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shimon Vega
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
5
|
Equbal A, Madhu PK, Meier BH, Nielsen NC, Ernst M, Agarwal V. Parameter independent low-power heteronuclear decoupling for fast magic-angle spinning solid-state NMR. J Chem Phys 2017; 146:084202. [DOI: 10.1063/1.4976997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Asif Equbal
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
- Center for Insoluble Protein Structures (inSpin) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - P. K. Madhu
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Beat H. Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Niels Chr. Nielsen
- Center for Insoluble Protein Structures (inSpin) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| |
Collapse
|
6
|
Frantsuzov I, Vasa SK, Ernst M, Brown SP, Zorin V, Kentgens APM, Hodgkinson P. Rationalising Heteronuclear Decoupling in Refocussing Applications of Solid-State NMR Spectroscopy. Chemphyschem 2017; 18:394-405. [PMID: 28111874 PMCID: PMC5396389 DOI: 10.1002/cphc.201601003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Factors affecting the performance of 1 H heteronuclear decoupling sequences for magic-angle spinning (MAS) NMR spectroscopy of organic solids are explored, as observed by time constants for the decay of nuclear magnetisation under a spin-echo (T2' ). By using a common protocol over a wide range of experimental conditions, including very high magnetic fields and very high radio-frequency (RF) nutation rates, decoupling performance is observed to degrade consistently with increasing magnetic field. Inhomogeneity of the RF field is found to have a significant impact on T2' values, with differences of about 20 % observed between probes with different coil geometries. Increasing RF nutation rates dramatically improve robustness with respect to RF offset, but the performance of phase-modulated sequences degrades at the very high nutation rates achievable in microcoils as a result of RF transients. The insights gained provide better understanding of the factors limiting decoupling performance under different conditions, and the high values of T2' observed (which generally exceed previous literature values) provide reference points for experiments involving spin magnetisation refocussing, such as 2D correlation spectra and measuring small spin couplings.
Collapse
Affiliation(s)
- Ilya Frantsuzov
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUnited Kingdom
| | - Suresh K. Vasa
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 EDNijmegenThe Netherlands
| | - Matthias Ernst
- Laboratory of Physical ChemistryETH ZürichVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Steven P. Brown
- Department of PhysicsUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - Vadim Zorin
- Agilent Technologies (UK) Ltd.6 Mead RoadYarntonOxfordshireOX5 1QUUnited Kingdom
- Mestrelab ResearchS.L Feliciano Barrera 9B—Bajo15706Santiago de CompostelaSpain
| | - Arno P. M. Kentgens
- Institute for Molecules and MaterialsRadboud UniversityHeyendaalseweg 1356525 EDNijmegenThe Netherlands
| | - Paul Hodgkinson
- Department of ChemistryDurham UniversitySouth RoadDurhamDH1 3LEUnited Kingdom
| |
Collapse
|
7
|
Sharma K, Madhu PK, Agarwal V. Systematic evaluation of heteronuclear spin decoupling in solid-state NMR at the rotary-resonance conditions in the regime of fast magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:136-141. [PMID: 27472380 DOI: 10.1016/j.jmr.2016.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The performance of heteronuclear spin decoupling sequences in solid-state NMR severely degrades when the proton radiofrequency (RF) nutation frequencies (ν1) are close to or at multiples of magic-angle spinning (MAS) frequency (νr) that are referred to as rotary-resonance recoupling conditions (ν1=n·νr). Recently, two schemes, namely, PISSARRO and rCW(ApA), have been shown to be less affected by the problem of MAS and RF interference, specifically at the n=2 rotary-resonance recoupling condition, especially in the fast MAS regime. Here, we systematically evaluate the loss in intensity of several heteronuclear spin decoupling sequences at the n=1, 2 conditions compared to high-power decoupling in the fast-MAS regime. We propose that in the fast-MAS regime (above 40kHz) the entire discussion about RF and MAS interference can be avoided by using appropriate low-power decoupling sequences which give comparable performance to decoupling sequences with high-power (1)H irradiation of ca.195kHz.
Collapse
Affiliation(s)
- Kshama Sharma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India.
| |
Collapse
|