1
|
Thomas N, Welton C, Pawlak T, Raval P, Trébosc J, Jain SK, Reddy GNM. Deuteron-proton isotope correlation spectroscopy at high magnetic fields. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2025; 136:101993. [PMID: 39954529 DOI: 10.1016/j.ssnmr.2025.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/17/2025]
Abstract
A cross-polarization 2H-1H isotope correlation spectroscopy (CP-iCOSY) approach is presented for characterizing a deuterated amino acid, pharmaceutical compound and a solid formulation. This can be achieved by isotopic enrichment in conjunction with high magnetic field (28.2 T) and fast magic-angle spinning (MAS), enabling the rapid detection of 2H NMR spectra in a few seconds to minutes. Specifically, two-dimensional (2D) 2H-1H CP-iCOSY experiment allows the local structures and through-space interactions in a partially deuterated compounds to be elucidated. In doing so, we compare conventional spin-lock and rotor-echo-short-pulse-irradiation RESPIRATIONCP sequences for acquiring 2D 1H-2H correlation spectra. The RESPIRATIONCP sequence allows the detection of 2D peaks at lower CP contact times (0.1-1 ms) than the conventional CP (0.2-4 ms) sequence. Analysis of partially deuterated L-histidine·HCl·H2O and dopamine.HCl is presented, in which the detection of 2D peaks corresponding to 2H-1H pairs separated by greater than 4 Å distance demonstrates the potential of the presented approach for the characterization of packing interactions. These results are corroborated by NMR crystallography analysis using the Gauge-Including Projector Augmented-Wave (GIPAW) approach.
Collapse
Affiliation(s)
- Neethu Thomas
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Claire Welton
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Tomasz Pawlak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, Lodz, 90-363, Poland
| | - Parth Raval
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France
| | - Julien Trébosc
- University of Lille, CNRS, INRAE, Centrale Lille, Univ. Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, F-59000, Lille, France
| | - Sheetal K Jain
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
| | - G N Manjunatha Reddy
- University of Lille, CNRS, Centrale Lille Institut, Univ. Artois, UMR 8181-UCCS- Unité de Catalyse et Chimie Du Solide, F-59000, Lille, France.
| |
Collapse
|
2
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Saliba EP, Palani RS, Griffin RG. Homonuclear J-couplings and heteronuclear structural constraints. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 368:107785. [PMID: 39442473 DOI: 10.1016/j.jmr.2024.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
In magic angle spinning (MAS) experiments involving uniformly 13C/15N labeled proteins, 13C-13C and 13C-15N dipolar recoupling experiments are now routinely used to measure direct dipole-dipole couplings that constrain distances and torsion angles and determine molecular structures. When the distances are short (<4 Å), the direct couplings dominate the evolution of the spin system, and the 13C-13C and 13C-15N J-couplings (scalar couplings) are ignored. However, for structurally interesting >4 Å distances, the dipolar and J-couplings are generally of comparable magnitude, and the variation in J must be included in order to optimize the precision of the experiment. This problem is circumvented in cases with well resolved spectra by using frequency-selective dipolar recoupling methods where the effects of J-couplings are refocused. However, for larger molecules with more spectral crowding, the requisite pulse length to achieve selectivity becomes long and leads to unacceptable sensitivity losses during the pulse or the spectral overlap precludes selective excitation. In this paper, we address this problem with two approaches aimed at facilitating higher precision internuclear distance measurements in systems that are not fully resolved. Namely, (1) we describe an approach for high precision measurements of specific J-couplings using the in-phase anti-phase (IPAP) sequence which is integrated into a non-selective dipolar recoupling technique and (2) we utilize the measured J-couplings to implement a double quantum filter experiment capable of providing the resolution necessary for frequency selective dipolar recoupling techniques without resorting to multidimensional spectroscopy. We illustrate these methods using a 7-peptide segment from the amyloidogenic Sup-35p protein, U-13C/15N-GNNQQNY, where we have measured 25 of the 27 possible one bond 13C-13C J-couplings.
Collapse
Affiliation(s)
- Edward P Saliba
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
4
|
Nimerovsky E, Varkey AC, Kim M, Becker S, Andreas LB. Simplified Preservation of Equivalent Pathways Spectroscopy. JACS AU 2023; 3:2763-2771. [PMID: 37885577 PMCID: PMC10598565 DOI: 10.1021/jacsau.3c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Inspired by the recently proposed transverse mixing optimal control pulses (TROP) approach for improving signal in multidimensional magic-angle spinning (MAS) NMR experiments, we present simplified preservation of equivalent pathways spectroscopy (SPEPS). It transfers both transverse components of magnetization that occur during indirect evolutions, theoretically enabling a √2 improvement in sensitivity for each such dimension. We compare SPEPS transfer with TROP and cross-polarization (CP) using membrane protein and fibril samples at MAS of 55 and 100 kHz. In three-dimensional (3D) (H)CANH spectra, SPEPS outperformed TROP and CP by factors of on average 1.16 and 1.69, respectively, for the membrane protein, but only a marginal improvement of 1.09 was observed for the fibril. These differences are discussed, making note of the longer transfer time used for CP, 14 ms, as compared with 2.9 and 3.6 ms for SPEPS and TROP, respectively. Using SPEPS for two transfers in the 3D (H)CANCO experiment resulted in an even larger benefit in signal intensity, with an average improvement of 1.82 as compared with CP. This results in multifold time savings, in particular considering the weaker peaks that are observed to benefit the most from SPEPS.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Abel Cherian Varkey
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Myeongkyu Kim
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Stefan Becker
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Loren B. Andreas
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
5
|
Nimerovsky E, Becker S, Andreas LB. Windowed cross polarization at 55 kHz magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107404. [PMID: 36848688 DOI: 10.1016/j.jmr.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cross polarization (CP) transfers via Hartmann-Hahn matching conditions are one of the cornerstones of solid-state magic-angle spinning NMR experiments. Here we investigate a windowed sequence for cross polarization (wCP) at 55 kHz magic-angle spinning, placing one window (and one pulse) per rotor period on one or both rf channels. The wCP sequence is known to have additional matching conditions. We observe a striking similarity between wCP and CP transfer conditions when considering the flip angle of the pulse rather than the rf-field strength applied during the pulse. Using fictitious spin-1/2 formalism and average Hamiltonian theory, we derive an analytical approximation that matches these observed transfer conditions. We recorded data at spectrometers with different external magnetic fields up to 1200 MHz, for strong and weak heteronuclear dipolar couplings. These transfers, and even the selectivity of CP were again found to relate to flip angle (average nutation).
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Stefan Becker
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| |
Collapse
|
6
|
Ivanov KL, Mote KR, Ernst M, Equbal A, Madhu PK. Floquet theory in magnetic resonance: Formalism and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:17-58. [PMID: 34852924 DOI: 10.1016/j.pnmrs.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Floquet theory is an elegant mathematical formalism originally developed to solve time-dependent differential equations. Besides other fields, it has found applications in optical spectroscopy and nuclear magnetic resonance (NMR). This review attempts to give a perspective of the Floquet formalism as applied in NMR and shows how it allows one to solve various problems with a focus on solid-state NMR. We include both matrix- and operator-based approaches. We discuss different problems where the Hamiltonian changes with time in a periodic way. Such situations occur, for example, in solid-state NMR experiments where the time dependence of the Hamiltonian originates either from magic-angle spinning or from the application of amplitude- or phase-modulated radiofrequency fields, or from both. Specific cases include multiple-quantum and multiple-frequency excitation schemes. In all these cases, Floquet analysis allows one to define an effective Hamiltonian and, moreover, to treat cases that cannot be described by the more popularly used and simpler-looking average Hamiltonian theory based on the Magnus expansion. An important example is given by spin dynamics originating from multiple-quantum phenomena (level crossings). We show that the Floquet formalism is a very general approach for solving diverse problems in spectroscopy.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- International Tomographic Center, Institutskaya 3A, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 1, Novosibirsk 630090, Russia
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500046, India
| | - Matthias Ernst
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Asif Equbal
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, United States
| | - Perunthiruthy K Madhu
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
7
|
Gelenter MD, Hong M. Efficient 15N- 13C Polarization Transfer by Third-Spin-Assisted Pulsed Cross-Polarization Magic-Angle-Spinning NMR for Protein Structure Determination. J Phys Chem B 2018; 122:8367-8379. [PMID: 30106585 DOI: 10.1021/acs.jpcb.8b06400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We introduce a pulsed third-spin-assisted recoupling experiment that produces high-intensity long-range 15N-13C cross peaks using low radiofrequency (rf) energy. This Proton-Enhanced Rotor-echo Short-Pulse IRradiATION Cross-Polarization (PERSPIRATIONCP) pulse sequence operates with the same principle as the Proton-Assisted Insensitive-Nuclei Cross-Polarization (PAINCP) experiment but uses only a fraction of the rf energy by replacing continuous-wave 13C and 15N irradiation with rotor-echo 90° pulses. Using formyl-Met-Leu-Phe (f-MLF) and β1 immunoglobulin binding domain of protein G (GB1) as model proteins, we demonstrate experimentally how PERSPIRATIONCP polarization transfer depends on the CP contact time, rf power, pulse flip angle, and 13C carrier frequency and compare the PERSPIRATIONCP performance with the performances of PAINCP, RESPIRATIONCP, and SPECIFICCP for measuring 15N-13C cross peaks. PERSPIRATIONCP achieves long-range 15N-13C transfer and yields higher cross peak-intensities than that of the other techniques. Numerical simulations reproduce the experimental trends and moreover indicate that PERSPIRATIONCP relies on 15N-1H and 13C-1H dipolar couplings rather than 15N-13C dipolar coupling for polarization transfer. Therefore, PERSPIRATIONCP is an rf-efficient and higher-sensitivity alternative to PAINCP for measuring long-range 15N-13C correlations, which are essential for protein resonance assignment and structure determination. Using cross peaks from two PERSPIRATIONCP 15N-13C correlation spectra as the sole distance restraints, supplemented with (φ, ψ) torsion angles obtained from chemical shifts, we calculated the GB1 structure and obtained a backbone root-mean-square deviation of 2.0 Å from the high-resolution structure of the protein. Therefore, this rf-efficient PERSPIRATIONCP method is useful for obtaining many long-range distance restraints for protein structure determination.
Collapse
Affiliation(s)
- Martin D Gelenter
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Mei Hong
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
8
|
Zhang Z, Li J, Chen Y, Xie H, Yang J. A robust heteronuclear dipolar recoupling method comparable to TEDOR for proteins in magic-angle spinning solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2017; 285:79-85. [PMID: 29126001 DOI: 10.1016/j.jmr.2017.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
In this letter, we propose a robust heteronuclear dipolar recoupling method for proteins in magic-angle spinning (MAS) solid-state NMR. This method is as simple, robust and efficient as the well-known TEDOR in the aspect of magnetization transfer between 15N and 13C. Deriving from our recent band-selective dual back-to-back pulses (DBP) (Zhang et al., 2016), this method uses new phase-cycling schemes to realize broadband DBP (Bro-DBP). For broadband 15N-13C magnetization transfer (simultaneous 15N→13C' and 15N→13Cα), Bro-DBP has almost the same 15N→13Cα efficiency while offers 30-40% enhancement on 15N→13C' transfer, compared to TEDOR. Besides, Bro-DBP can also be used as a carbonyl (13C')-selected method, whose 15N→13C' efficiency is up to 1.7 times that of TEDOR and is also higher than that of band-selective DBP. The performance of Bro-DBP is demonstrated on the N-formyl-[U-13C,15N]-Met-Leu-Phe-OH (fMLF) peptide and the U-13C, 15N labeled β1 immunoglobulin binding domain of protein G (GB1) microcrystalline protein. Since Bro-DBP is as robust, simple and efficient as TEDOR, we believe it is very useful for protein studies in MAS solid-state NMR.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China.
| | - Jianping Li
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Huayong Xie
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|
9
|
Shankar R, Ernst M, Madhu PK, Vosegaard T, Nielsen NC, Nielsen AB. A general theoretical description of the influence of isotropic chemical shift in dipolar recoupling experiments for solid-state NMR. J Chem Phys 2017; 146:134105. [DOI: 10.1063/1.4979123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
10
|
Zhang Z, Chen Y, Yang J. Band-selective heteronuclear dipolar recoupling with dual back-to-back pulses in rotating solids. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 272:46-52. [PMID: 27623242 DOI: 10.1016/j.jmr.2016.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/31/2016] [Accepted: 09/05/2016] [Indexed: 06/06/2023]
Abstract
We propose a robust band-selective heteronuclear 15N-13C recoupling method using dual back-to-back (BABA) pulses (DBP). It contains four 90° pulses in each rotor period and corresponding phase cycling on each channel (13C and 15N). DBP aims at rapid band-selective heteronuclear magnetization transfer between 15N and 13Cα/13C', whose efficiency is close to that of the well-known SPECIFIC CP in membrane proteins with relatively short relaxation time in rotating frame (T1ρ). Compared to SPECIFIC CP, DBP is very simple to set up and highly robust to RF variations. Thus, it can reduce the efforts in experimental optimization, especially for low-sensitive samples, and is very suitable for long-time or quantitative experiments. The efficacy of DBP is demonstrated by the E. coli diacylglycerol kinase (DAGK) proteoliposome. We anticipate that DBP would be useful for (segments of) membrane proteins that undergo the μs-ms timescale motions in magic-angle spinning (MAS) solid-state NMR.
Collapse
Affiliation(s)
- Zhengfeng Zhang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yanke Chen
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jun Yang
- National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China.
| |
Collapse
|
11
|
Basse K, Shankar R, Bjerring M, Vosegaard T, Nielsen NC, Nielsen AB. Handling the influence of chemical shift in amplitude-modulated heteronuclear dipolar recoupling solid-state NMR. J Chem Phys 2016; 145:094202. [PMID: 27608995 DOI: 10.1063/1.4961736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a theoretical analysis of the influence of chemical shifts on amplitude-modulated heteronuclear dipolar recoupling experiments in solid-state NMR spectroscopy. The method is demonstrated using the Rotor Echo Short Pulse IRrAdiaTION mediated Cross-Polarization ((RESPIRATION)CP) experiment as an example. By going into the pulse sequence rf interaction frame and employing a quintuple-mode operator-based Floquet approach, we describe how chemical shift offset and anisotropic chemical shift affect the efficiency of heteronuclear polarization transfer. In this description, it becomes transparent that the main attribute leading to non-ideal performance is a fictitious field along the rf field axis, which is generated from second-order cross terms arising mainly between chemical shift tensors and themselves. This insight is useful for the development of improved recoupling experiments. We discuss the validity of this approach and present quaternion calculations to determine the effective resonance conditions in a combined rf field and chemical shift offset interaction frame transformation. Based on this, we derive a broad-banded version of the (RESPIRATION)CP experiment. The new sequence is experimentally verified using SNNFGAILSS amyloid fibrils where simultaneous (15)N → (13)CO and (15)N → (13)Cα coherence transfer is demonstrated on high-field NMR instrumentation, requiring great offset stability.
Collapse
Affiliation(s)
- Kristoffer Basse
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ravi Shankar
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Morten Bjerring
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Niels Chr Nielsen
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Anders B Nielsen
- Center for Insoluble Protein Structures (inSPIN) and Center for Ultrahigh-Field NMR Spectroscopy, Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Straasø LA, Shankar R, Tan KO, Hellwagner J, Meier BH, Hansen MR, Nielsen NC, Vosegaard T, Ernst M, Nielsen AB. Improved transfer efficiencies in radio-frequency-driven recoupling solid-state NMR by adiabatic sweep through the dipolar recoupling condition. J Chem Phys 2016; 145:034201. [PMID: 27448878 DOI: 10.1063/1.4958318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The homonuclear radio-frequency driven recoupling (RFDR) experiment is commonly used in solid-state NMR spectroscopy to gain insight into the structure of biological samples due to its ease of implementation, stability towards fluctuations/missetting of radio-frequency (rf) field strength, and in general low rf requirements. A theoretical operator-based Floquet description is presented to appreciate the effect of having a temporal displacement of the π-pulses in the RFDR experiment. From this description, we demonstrate improved transfer efficiency for the RFDR experiment by generating an adiabatic passage through the zero-quantum recoupling condition. We have compared the performances of RFDR and the improved sequence to mediate efficient (13)CO to (13)Cα polarization transfer for uniformly (13)C,(15)N-labeled glycine and for the fibril forming peptide SNNFGAILSS (one-letter amino acid codes) uniformly (13)C,(15)N-labeled at the FGAIL residues. Using numerically optimized sweeps, we get experimental gains of approximately 20% for glycine where numerical simulations predict an improvement of 25% relative to the standard implementation. For the fibril forming peptide, using the same sweep parameters as found for glycine, we have gains in the order of 10%-20% depending on the spectral regions of interest.
Collapse
Affiliation(s)
- Lasse A Straasø
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Ravi Shankar
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Kong Ooi Tan
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Johannes Hellwagner
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Michael Ryan Hansen
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 28/30, D-48149 Münster, Germany
| | - Niels Chr Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anders B Nielsen
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| |
Collapse
|