1
|
Mondal P, Chowdhury R, Nandi S, Amin MA, Bhattacharyya K, Ghosh S. Probing Deviation of Adhered Membrane Dynamics between Reconstituted Liposome and Cellular System. Chem Asian J 2019; 14:4616-4624. [PMID: 31210021 DOI: 10.1002/asia.201900588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/10/2019] [Indexed: 01/22/2023]
Abstract
The dynamics of cell-cell adhesion are complicated due to complexities in cellular interactions and intra-membrane interactions. In the present work, we have reconstituted a liposome-based model system to mimic the cell-cell adhesion process. Our model liposome system consists of one fluorescein-tagged and one TRITC (tetramethyl-rhodamine isothiocyanate)-tagged liposome, adhered through biotin-neutravidin interaction. We monitored the adhesion process in liposomes using Förster Resonance Energy Transfer (FRET) between fluorescein (donor) and TRITC (acceptor). Occurrence of FRET is confirmed by the decrease in donor lifetime as well as distinct rise time of the acceptor fluorescence. Interestingly, the acceptor's emission exhibits fluctuations in the range of ≈3±1 s. This may be attributed to structural oscillations associated in two adhered liposomes arising from the flexible nature of biotin-neutravidin interaction. We have compared the dynamics in a cell-mimicking liposome system with that in an in vitro live cell system. In the adhered live cell system, we used CPM (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, donor) and nile red (acceptor), which are known to stain the membrane of CHO (Chinese Hamster Ovary) cells. The dynamics of the adhered membranes of two live CHO cells were observed through FRET between CPM and nile red. The acceptor fluorescence intensity exhibits an oscillation in the time-scale of ≈1±0.75 s, which is faster compared to the reconstituted liposome system, indicating the contributions and involvement of multiple dynamic protein complexes around the cell membrane. This study offers simple reconstituted model systems to understand the complex membrane dynamics using a FRET-based physical chemistry approach.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Organic & Medicinal Chemistry Division, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-, 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| | - Rajdeep Chowdhury
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India.,Present Address: Texas A&M Health Science Center, College of Medicine, Bryan, TX 77807, USA
| | - Somen Nandi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Md Asif Amin
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | | | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-, 700032, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-, 201002, India
| |
Collapse
|
2
|
Abuelela AM, Alodail FA, Al-Shihry SS, Prezhdo OV. DFT study of the infrared and Raman spectra of photochromic Fulgide; 3-Dicyclopropylmethylene-4-E-[1-(2,5-dimethyl-3-furyl)ethylidene]-5-(4-nitrophenylcyanomethylenetetrahydrofuran-2-one. Struct Chem 2018. [DOI: 10.1007/s11224-018-1093-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
3
|
Nandi S, Ghosh S, Bhattacharyya K. Live Cell Microscopy: A Physical Chemistry Approach. J Phys Chem B 2018; 122:3023-3036. [PMID: 29389140 DOI: 10.1021/acs.jpcb.7b11689] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Probing dynamics of intracellular components using physical chemistry techniques is a remarkable bottom-up approach for understanding the structures and functions of a biological cell. In this "Feature Article", we give an overview on local polarity, solvation, viscosity, acid-base property, red-ox processes (thiol-disulfide exchange), and gene silencing at selected intracellular components inside a live cell. Significant differences have been observed between cancer cells and their noncancer counterparts. We demonstrate that thiol-disulfide exchange, calcium oscillation, and gene silencing are manifested in time dependence of fluorescence intensity. We show that fluorescent gold nanoclusters may be used in drug delivery (e.g., doxorubicin) and selective killing of cancer cells. Further, we discuss dynamics and structural changes of DNA quadruplexes and i-motifs, induced by different external conditions (e.g., pH) and additives (e.g., K+ and other target specific small molecules). We demonstrate that peptidomimetic analogues have high specificity over double-stranded DNA for binding with i-motifs and G-quadruplexes. These results may have significant biological implications.
Collapse
Affiliation(s)
- Somen Nandi
- Department of Physical Chemistry , Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032 , India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division , CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road , Jadavpur, Kolkata , 700 032 West Bengal , India.,Academy of Scientific and Innovative Research (AcSIR) , CSIR-Indian Institute of Chemical Biology Campus , 4 Raja S. C. Mullick Road , Jadavpur, Kolkata 700 032 , India
| | - Kankan Bhattacharyya
- Department of Chemistry , Indian Institute of Science Education and Research Bhopal , Bhopal , 462 066 Madhya Pradesh , India
| |
Collapse
|
4
|
Ghosh C, Nandi S, Bhattacharyya K. Probing micro-environment of lipid droplets in a live breast cell: MCF7 and MCF10A. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.12.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Sasmal DK, Pulido LE, Kasal S, Huang J. Single-molecule fluorescence resonance energy transfer in molecular biology. NANOSCALE 2016; 8:19928-19944. [PMID: 27883140 PMCID: PMC5145784 DOI: 10.1039/c6nr06794h] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful technique for studying the conformation dynamics and interactions of individual biomolecules. In this review, we describe the concept and principle of smFRET, illustrate general instrumentation and microscopy settings for experiments, and discuss the methods and algorithms for data analysis. Subsequently, we review applications of smFRET in protein conformational changes, ion channel open-close properties, receptor-ligand interactions, nucleic acid structure regulation, vesicle fusion, and force induced conformational dynamics. Finally, we discuss the main limitations of smFRET in molecular biology.
Collapse
Affiliation(s)
- Dibyendu K Sasmal
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Laura E Pulido
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Shan Kasal
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | - Jun Huang
- The Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|