1
|
Miyamoto T, Matsui Y, Terashige T, Morimoto T, Sono N, Yada H, Ishihara S, Watanabe Y, Adachi S, Ito T, Oka K, Sawa A, Okamoto H. Probing ultrafast spin-relaxation and precession dynamics in a cuprate Mott insulator with seven-femtosecond optical pulses. Nat Commun 2018; 9:3948. [PMID: 30258055 PMCID: PMC6158258 DOI: 10.1038/s41467-018-06312-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
A charge excitation in a two-dimensional Mott insulator is strongly coupled with the surrounding spins, which is observed as magnetic-polaron formations of doped carriers and a magnon sideband in the Mott-gap transition spectrum. However, the dynamics related to the spin sector are difficult to measure. Here, we show that pump-probe reflection spectroscopy with seven-femtosecond laser pulses can detect the optically induced spin dynamics in Nd2CuO4, a typical cuprate Mott insulator. The bleaching signal at the Mott-gap transition is enhanced at ~18 fs. This time constant is attributable to the spin-relaxation time during magnetic-polaron formation, which is characterized by the exchange interaction. More importantly, ultrafast coherent oscillations appear in the time evolution of the reflectivity changes, and their frequencies (1400-2700 cm-1) are equal to the probe energy measured from the Mott-gap transition peak. These oscillations can be interpreted as the interference between charge excitations with two magnons originating from charge-spin coupling.
Collapse
Affiliation(s)
- T Miyamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - Y Matsui
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - T Terashige
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan
| | - T Morimoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - N Sono
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - H Yada
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan
| | - S Ishihara
- Department of Physics, Tohoku University, Sendai, 980-8578, Japan
| | - Y Watanabe
- Department of Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - S Adachi
- Department of Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - T Ito
- National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Ibaraki, Japan
| | - K Oka
- National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Ibaraki, Japan
| | - A Sawa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Ibaraki, Japan
| | - H Okamoto
- Department of Advanced Materials Science, University of Tokyo, Chiba, 277-8561, Japan.
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Chiba, 277-8568, Japan.
| |
Collapse
|