1
|
Dharmarajan NP, Vidyasagar D, Yang JH, Talapaneni SN, Lee J, Ramadass K, Singh G, Fawaz M, Kumar P, Vinu A. Bio-Inspired Supramolecular Self-Assembled Carbon Nitride Nanostructures for Photocatalytic Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306895. [PMID: 37699553 DOI: 10.1002/adma.202306895] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Indexed: 09/14/2023]
Abstract
Fast production of hydrogen and oxygen in large amounts at an economic rate is the need of the hour to cater to the needs of the most awaited hydrogen energy, a futuristic renewable energy solution. Production of hydrogen through simple water splitting via visible light photocatalytic approach using sunlight is considered as one of the most promising and sustainable approaches for generating clean fuels. For this purpose, a variety of catalytic techniques and novel catalysts have been investigated. Among these catalysts, carbon nitride is presently deemed as one of the best candidates for the visible light photocatalysis due to its unique molecular structure and adequate visible-range bandgap. Its bandgap can be further engineered by structural and morphological manipulation or by doping/hybridization. Among numerous synthetic approaches for carbon nitrides, supramolecular self-assembly is one of the recently developed elegant bottom-up strategies as it is bio-inspired and provides a facile and eco-friendly route to synthesize high surface area carbon nitride with superior morphological features and other semiconducting and catalytic properties. The current review article broadly covers supramolecular self-assembly synthesis of carbon nitride nanostructures and their photocatalytic water-splitting applications and provides a comprehensive outlook on future directions.
Collapse
Affiliation(s)
- Nithinraj Panangattu Dharmarajan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Devthade Vidyasagar
- Material Science & Engineering Department, Kyungpook National University, Daegu, 41566, South Korea
| | - Jae-Hun Yang
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | | | - Jangmee Lee
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Mohammed Fawaz
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, Newcastle, NSW, 2308, Australia
| |
Collapse
|
2
|
Hu Y, Wang S, He Y, An L. Evaluation of proton transport and solvation effect in hydrated Nafion membrane with degradation. Phys Chem Chem Phys 2022; 24:29024-29033. [DOI: 10.1039/d2cp02817d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In proton exchange membrane fuel cells (PEMFCs), free radicals easily attack ionomers, resulting in membrane degradation.
Collapse
Affiliation(s)
- Yu Hu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuai Wang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yurong He
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
3
|
Sy S, Jiang G, Zhang J, Zarrin H, Cumberland T, Abureden S, Bell E, Gostick J, Yu A, Chen Z. A Near-Isotropic Proton-Conducting Porous Graphene Oxide Membrane. ACS NANO 2020; 14:14947-14959. [PMID: 33174432 DOI: 10.1021/acsnano.0c04533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A graphene oxide (GO) membrane is an ideal separator for multiple applications due to its morphology, selectivity, controllable oxidation, and high aspect ratio of the 2D nanosheet. However, the anisotropic ion conducting nature caused by its morphology is not favorable toward through-plane conductivity, which is vital for solid-state electrolytes in electrochemical devices. Here, we present a strategy to selectively enhance the through-plane proton conductivity of a GO membrane by reducing its degree of anisotropy with pore formation on the nanosheets through the sonication-assisted Fenton reaction. The obtained porous GO (pGO) membrane is a near-isotropic, proton-conducting GO membrane, showing a degree of anisotropy as low as 2.77 and 47% enhancement of through-plane proton conductivity as opposed to the pristine GO membrane at 25 °C and 100% relative humidity. The anisotropic behavior shows an Arrhenius relationship with temperature, while the water interlayer formation between nanosheets plays a pivotal role in the anisotropic behavior under different values of relative humidity (RH); that is, as low RH increases, water molecules tend to orient in a bimodal distribution clinching the nanosheets and forming a subnanometer, high-aspect-ratio, water interlayer, resulting in its peak anisotropy. Further increase in RH fills the interlayer gap, resulting in behaviors akin to near-isotropic, bulk water. Lastly, implementation of the pGO membrane, as the solid proton-conductive electrolyte, in an alcohol fuel cell sensor has been demonstrated, showcasing the excellent selectivity and response, exceptional linearity, and ethanol detection limits as low as 25 ppm. The amalgamation of excellent performance, high customizability, facile scalability, low cost, and environmental friendliness in the present method holds considerable potential for transforming anisotropic GO membranes into near-isotropic ion conductors to further membrane development and sensing applications.
Collapse
Affiliation(s)
- Serubbabel Sy
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Gaopeng Jiang
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Jing Zhang
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Hadis Zarrin
- Department of Chemical Engineering, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Timothy Cumberland
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Salah Abureden
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Ellsworth Bell
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Jeff Gostick
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
4
|
Shi B, Wu H, Shen J, Cao L, He X, Ma Y, Li Y, Li J, Xu M, Mao X, Qiu M, Geng H, Yang P, Jiang Z. Control of Edge/in-Plane Interactions toward Robust, Highly Proton Conductive Graphene Oxide Membranes. ACS NANO 2019; 13:10366-10375. [PMID: 31442372 DOI: 10.1021/acsnano.9b04156] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene oxide (GO) membrane, bearing well-aligned interlayer nanochannels and well-defined physicochemical properties, promises fast proton transport. However, the deficiency of proton donor groups on the basal plane of GO and weak interlamellar interactions between the adjacent nanosheets often cause low proton conduction capability and poor water stability. Herein, we incorporate sulfonated graphene quantum dots (SGQD) into GO membrane to solve the above dilemma via synergistically controlling the edge electrostatic interaction and in-plane π-π interaction of SGQD with GO nanosheets. SGQD with three different kinds of electron-withdrawing groups are employed to modulate the edge electrostatic interactions and improve the water swelling resistant property of GO membranes. Meanwhile, SGQD with abundant proton donor groups assemble on the sp2 domain of GO via in-plane π-π interaction and confer the GO membranes with low-energy-barrier proton transport channels. As a result, the GO membrane achieves an enhanced proton conductivity of 324 mS cm-1, maximum power density of 161.6 mW cm-2, and superior water stability when immersed into water for one month. This study demonstrates a strategy for independent manipulation of conductive function and nonconductive function to fabricate high-performance proton exchange membranes.
Collapse
Affiliation(s)
- Benbing Shi
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , China
| | - Jianliang Shen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Li Cao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Xueyi He
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Yu Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Yan Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Jinzhao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Mingzhao Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Xunli Mao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Ming Qiu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Haobo Geng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Pengfei Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , China
| |
Collapse
|
5
|
Vasiliev VP, Smirnov VA. Electric charge accumulation and storage in Nafion and graphene oxide films. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|