1
|
Jabłoński M. Halogen Bond to Experimentally Significant N-Heterocyclic Carbenes (I, IMe 2, I iPr 2, I tBu 2, IPh 2, IMes 2, IDipp 2, IAd 2; I = Imidazol-2-ylidene). Int J Mol Sci 2023; 24:ijms24109057. [PMID: 37240403 DOI: 10.3390/ijms24109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The subjects of the article are halogen bonds between either XCN or XCCH (X = Cl, Br, I) and the carbene carbon atom in imidazol-2-ylidene (I) or its derivatives (IR2) with experimentally significant and systematically increased R substituents at both nitrogen atoms: methyl = Me, iso-propyl = iPr, tert-butyl = tBu, phenyl = Ph, mesityl = Mes, 2,6-diisopropylphenyl = Dipp, 1-adamantyl = Ad. It is shown that the halogen bond strength increases in the order Cl < Br < I and the XCN molecule forms stronger complexes than XCCH. Of all the carbenes considered, IMes2 forms the strongest and also the shortest halogen bonds with an apogee for complex IMes2⋯ICN for which D0 = 18.71 kcal/mol and dC⋯I = 2.541 Å. In many cases, IDipp2 forms as strong halogen bonds as IMes2. Quite the opposite, although characterized by the greatest nucleophilicity, ItBu2 forms the weakest complexes (and the longest halogen bonds) if X ≠ Cl. While this finding can easily be attributed to the steric hindrance exerted by the highly branched tert-butyl groups, it appears that the presence of the four C-H⋯X hydrogen bonds may also be of importance here. Similar situation occurs in the case of complexes with IAd2.
Collapse
Affiliation(s)
- Mirosław Jabłoński
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Torun, Poland
| |
Collapse
|
2
|
Grabowski SJ. Halogen bonds with carbenes acting as Lewis base units: complexes of imidazol-2-ylidene: theoretical analysis and experimental evidence. Phys Chem Chem Phys 2023; 25:9636-9647. [PMID: 36943198 DOI: 10.1039/d3cp00348e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
ωB97XD/aug-cc-pVDZ and ωB97XD/aug-cc-pVTZ calculations were performed on complexes of imidazol-2-ylidene that are linked by halogen bonds. This singlet carbene acts as the Lewis base through a lone electron pair located at the carbon centre. The XCCH, XCN and X2 units were chosen here as those that interact through the X Lewis acid halogen centre (X = Cl, Br and I); if X = F the complexes are linked by interactions which are not classified as halogen bonds. The properties of interactions that occur in complexes are analyzed using the results of DFT calculations which are supported by parameters derived from the Quantum Theory of Atoms in Molecules, QTAIM, and the Natural Bond Orbital, NBO, approaches. The energy decomposition analysis, EDA, applied here provided additional characteristics of interactions linking complexes analyzed. The majority of complexes are linked by the medium in strength and strong halogen bonds which often possess characteristics typical for covalent bonds. Searches through the Cambridge Structural Database were also performed and structures analogues to complexes analyzed theoretically were found, and these structures are also discussed in this study.
Collapse
Affiliation(s)
- Sławomir J Grabowski
- Faculty of Chemistry, University of the Basque Country and Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
3
|
Michalczyk M, Zierkiewicz W, Scheiner S. Crystal Structure Survey and Theoretical Analysis of Bifurcated Halogen Bonds. CRYSTAL GROWTH & DESIGN 2022; 22:6521-6530. [PMID: 36345386 PMCID: PMC9634799 DOI: 10.1021/acs.cgd.2c00726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The possibility that two Lewis bases can share a single halogen atom within the context of a bifurcated halogen bond (XB) is explored first by a detailed examination of the CSD. Of the more than 22,000 geometries that fit the definition of an XB (with X = Cl, Br, I), less than 2% are bifurcated. There is a heavy weighting of I in such bifurcated arrangements as opposed to Br, which prefers monofurcated bonds. The conversion from mono to bifurcated is associated with a smaller number of short contact distances, as well as a trend toward lesser linearity. The two XBs within a bifurcated system are somewhat symmetrical: the two lengths generally differ by less than 0.05 Å, and the two XB angles are within several degrees of one another. Quantum calculations of model systems reflect the patterns observed in crystals and reinforce the idea that the negative cooperativity within a bifurcated XB weakens and lengthens each individual bond.
Collapse
Affiliation(s)
- Mariusz Michalczyk
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wiktor Zierkiewicz
- Faculty
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Steve Scheiner
- Department
of Chemistry and Biochemistry, Utah State
University Logan, Logan, Utah 84322-0300, United States
| |
Collapse
|
4
|
Sanyal S, Esterhuysen C. Nature of halogen bond adducts of carbones with XCF3 (X = Cl, Br, I) species. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
|
6
|
Elguero J, Alkorta I, Del Bene JE. Calculated coupling constants 1 J(X-Y) and 1 K(X-Y), and fundamental relationships among the reduced coupling constants for molecules H m X-YH n , with X, Y ═ 1 H, 7 Li, 9 Be, 11 B, 13 C, 15 N, 17 O, 19 F, 31 P, 33 S, and 35 Cl. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:727-732. [PMID: 32247293 DOI: 10.1002/mrc.5026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been performed to determine coupling constants 1 J(X-Y) for 65 molecules Hm X-YHn , with X,Y ═ 1 H, 7 Li, 9 Be, 11 B, 13 C, 15 N, 17 O, 19 F, 31 P, 33 S, and 35 Cl. The computed 1 J(X-Y) values are in good agreement with available experimental data. The reduced coupling constants 1 K(X-Y) have been derived from 1 J(X-Y) by removing the dependence on the magnetogyric ratios of X and Y. Patterns are found for the reduced coupling constants on a 1 K(X-Y) surface that are related to the positions of X and Y in the periodic table.
Collapse
Affiliation(s)
- José Elguero
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Janet E Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA
| |
Collapse
|
7
|
Del Bene JE, Alkorta I, Elguero J. Hydrogen bonds and halogen bonds in complexes of carbones L→C←L as electron donors to HF and ClF, for L = CO, N2, HNC, PH3, and SH2. Phys Chem Chem Phys 2020; 22:15966-15975. [DOI: 10.1039/d0cp02009e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MP2 and EOM-CCSD calculations have been carried out to determine the structures, binding energies, and spin-spin coupling constants of carbone complexes L→C←L with the carbone the electron donor to HF or ClF, for L = CO, N2, HNC, PH3, and SH2.
Collapse
Affiliation(s)
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC)
- E-28006 Madrid
- Spain
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC)
- E-28006 Madrid
- Spain
| |
Collapse
|
8
|
Piña MDLN, Bauzá A, Frontera A. Halogen⋯halogen interactions in decahalo-closo-carboranes: CSD analysis and theoretical study. Phys Chem Chem Phys 2020; 22:6122-6130. [DOI: 10.1039/d0cp00114g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We theoretically (PBE0-D3/def2TZVP) and experimentally (CSD analysis) demonstrate the importance of “like–like” halogen interactions for the stability of several decahalo-closo-carborane dimers.
Collapse
Affiliation(s)
- Maria de las Nieves Piña
- Department of Chemistry Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Antonio Bauzá
- Department of Chemistry Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| | - Antonio Frontera
- Department of Chemistry Universitat de les Illes Balears
- Crta. de Valldemossa km 7.5
- 07122 Palma (Baleares)
- Spain
| |
Collapse
|
9
|
Ghafarian Shirazi R, Neese F, Pantazis DA, Bistoni G. Physical Nature of Differential Spin-State Stabilization of Carbenes by Hydrogen and Halogen Bonding: A Domain-Based Pair Natural Orbital Coupled Cluster Study. J Phys Chem A 2019; 123:5081-5090. [PMID: 30938995 PMCID: PMC6727382 DOI: 10.1021/acs.jpca.9b01051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/21/2019] [Indexed: 11/28/2022]
Abstract
The variation in the singlet-triplet energy gap of diphenylcarbene (DPC) upon interaction with hydrogen (water and methanol) or halogen bond (XCF3, X = Cl, Br, I) donors to form van der Waals (vdW) complexes is investigated in relation to the electrostatic and dispersion components of such intermolecular interactions. The domain-based local pair natural orbital coupled cluster method, DLPNO-CCSD(T), is used for calculating accurate single-triplet energy gaps and interaction energies for both spin states. The local energy decomposition scheme is used to provide an accurate quantification to the various interaction energy components at the DLPNO-CCSD(T) level. It is shown that the formation of vdW adducts stabilizes the singlet state of DPC, and in the case of water, methanol, and ICF3, it reverses the ground state from triplet to singlet. Electrostatic interactions are significant in both spin states, but preferentially stabilize the singlet state. For methanol and ClCF3, London dispersion forces have the opposite effect, stabilizing preferentially the triplet state. The quantification of the energetic components of the interactions through the local energy decomposition analysis correlates well with experimental findings and provides the basis for more elaborate treatments of microsolvation in carbenes.
Collapse
Affiliation(s)
- Reza Ghafarian Shirazi
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
- Fakultät
für Chemie und Biochemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
10
|
Lin H, Meng L, Li X, Zeng Y, Zhang X. Comparison of pnicogen and tetrel bonds in complexes containing CX2 carbenes (X = F, Cl, Br, OH, OMe, NH2, and NMe2). NEW J CHEM 2019. [DOI: 10.1039/c9nj03397a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The similarities and differences of pnicogen and tetrel bonds formed by carbenes CX2 with H3AsO and H3SiCN were investigated by carrying out ab initio calculations in association with topological analysis of electron density.
Collapse
Affiliation(s)
- Hui Lin
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
| | - Lingpeng Meng
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Xiaoyan Li
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Yanli Zeng
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| | - Xueying Zhang
- College of Chemistry and Material Science
- Hebei Normal University
- Shijiazhuang
- P. R. China
- National Demonstration Center for Experimental Chemistry
| |
Collapse
|
11
|
|
12
|
Del Bene JE, Alkorta I, Elguero J. Halogen Bonding Involving CO and CS with Carbon as the Electron Donor. Molecules 2017; 22:E1955. [PMID: 29137153 PMCID: PMC6150174 DOI: 10.3390/molecules22111955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022] Open
Abstract
MP2/aug'-cc-pVTZ calculations have been carried out to investigate the halogen-bonded complexes formed when CO and CS act as electron-pair donors through C to ClF, ClNC, ClCl, ClOH, ClCN, ClCCH, and ClNH₂. CO forms only complexes stabilized by traditional halogen bonds, and all ClY molecules form traditional halogen-bonded complexes with SC, except ClF which forms only an ion-pair complex. Ion-pair complexes are also found on the SC:ClNC and SC:ClCl surfaces. SC:ClY complexes stabilized by traditional halogen bonds have greater binding energies than the corresponding OC:ClY complexes. The largest binding energies are found for the ion-pair SC-Cl⁺:-Y complexes. The transition structures which connect the complex and the ion pair on SC:ClNC and SC:ClCl potential surfaces provide the barriers for inter-converting these structures. Charge-transfer from the lone pair on C to the σ-hole on Cl is the primary charge-transfer interaction stabilizing OC:ClY and SC:ClY complexes with traditional halogen bonds. A secondary charge-transfer occurs from the lone pairs on Cl to the in-plane and out-of-plane π antibonding orbitals of ClY. This secondary interaction assumes increased importance in the SC:ClNH₂ complex, and is a factor leading to its unusual structure. C-O and C-S stretching frequencies and 13C chemical shieldings increase upon complex formation with ClY molecules. These two spectroscopic properties clearly differentiate between SC:ClY complexes and SC-Cl⁺:-Y ion pairs. Spin-spin coupling constants 1xJ(C-Cl) for OC:ClY complexes increase with decreasing distance. As a function of the C-Cl distance, 1xJ(C-Cl) and ¹J(C-Cl) provide a fingerprint of the evolution of the halogen bond from a traditional halogen bond in the complexes, to a chlorine-shared halogen bond in the transition structures, to a covalent bond in the ion pairs.
Collapse
Affiliation(s)
- Janet E Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, OH 44555, USA.
| | - Ibon Alkorta
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| | - José Elguero
- Instituto de Química Médica (IQM-CSIC), Juan de la Cierva, 3, E-28006 Madrid, Spain.
| |
Collapse
|