1
|
Janssen M, Verkholyak T, Kuzmak A, Kondrat S. Optimising nanoporous supercapacitors for heat-to-electricity conversion. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
sadek Kadari A, Khane Y, Nebatti Ech-Chergui A, Popa A, Guezzoul M, Silipas D, Bennabi F, Zoukel A, Akyildiz E, Driss-Khodja K, Amrani B. Growth, properties and photocatalytic degradation of congo red using Gd:ZnO thin films under visible light. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Sun Y, Dai Z, Shen G, Lu X, Ling X, Ji X. Accelerate the Electrolyte Perturbed-Chain Statistical Associating Fluid Theory–Density Functional Theory Calculation With the Chebyshev Pseudo-Spectral Collocation Method. Part II. Spherical Geometry and Anderson Mixing. Front Chem 2022; 9:801551. [PMID: 35141203 PMCID: PMC8818718 DOI: 10.3389/fchem.2021.801551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
To improve the efficiency of electrolyte perturbed-chain statistical associating fluid theory–density functional theory (ePC-SAFT-DFT) calculation of the confined system, in this work, first, the Chebyshev pseudo-spectral collocation method was extended to the spherical pores. Second, it was combined with the Anderson mixing algorithm to accelerate the iterative process. The results show that the Anderson mixing algorithm can reduce the computation time significantly. Finally, based on the accelerated ePC-SAFT-DFT program, a systematic study of the effects of the temperature, pressure, pore size, and pore shape on the CO2 solubilities in the ionic liquids (ILs) confined inside the silica nanopores was conducted. Based on the simulation results, to obtain high CO2 solubilities in the ILs confined in silica, a better option is to use the silica material with a narrow spherical pore, and the IL-anion should be selected specifically considering that it has a more significant impact on the absorption enhancement effect.
Collapse
Affiliation(s)
- Yunhao Sun
- Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, China
- Division of Energy Science/Energy Engineering, Luleå University of Technology, Luleå, Sweden
| | - Zhengxing Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Gulou Shen
- National and Local Joint Engineering Research Center for Deep Utilization Technology of Rock-Salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiang Ling
- Jiangsu Key Laboratory of Process Enhancement and New Energy Equipment Technology, School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Xiang Ling, ; Xiaoyan Ji,
| | - Xiaoyan Ji
- Division of Energy Science/Energy Engineering, Luleå University of Technology, Luleå, Sweden
- *Correspondence: Xiang Ling, ; Xiaoyan Ji,
| |
Collapse
|
4
|
Verkholyak T, Kuzmak A, Kondrat S. Capacitive energy storage in single-file pores: Exactly solvable models and simulations. J Chem Phys 2021; 155:174112. [PMID: 34742202 DOI: 10.1063/5.0066786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding charge storage in low-dimensional electrodes is crucial for developing novel ecologically friendly devices for capacitive energy storage and conversion and water desalination. Exactly solvable models allow in-depth analyses and essential physical insights into the charging mechanisms. So far, however, such analytical approaches have been mainly limited to lattice models. Herein, we develop a versatile, exactly solvable, one-dimensional off-lattice model for charging single-file pores. Unlike the lattice model, this model shows an excellent quantitative agreement with three-dimensional Monte Carlo simulations. With analytical calculations and simulations, we show that the differential capacitance can be bell-shaped (one peak), camel-shaped (two peaks), or have four peaks. Transformations between these capacitance shapes can be induced by changing pore ionophilicity, by changing cation-anion size asymmetry, or by adding solvent. We find that the camel-shaped capacitance, characteristic of dilute electrolytes, appears for strongly ionophilic pores with high ion densities, which we relate to charging mechanisms specific to narrow pores. We also derive a large-voltage asymptotic expression for the capacitance, showing that the capacitance decays to zero as the inverse square of the voltage, C ∼ u-2. This dependence follows from hard-core interactions and is not captured by the lattice model.
Collapse
Affiliation(s)
- Taras Verkholyak
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Svientsitskii Street 1, 79011 Lviv, Ukraine
| | - Andrij Kuzmak
- Department for Theoretical Physics, I. Franko National University of Lviv, Lviv, Ukraine
| | - Svyatoslav Kondrat
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
5
|
Partition and selectivity of electrolytes in cylindrical nanopores with heterogeneous surface charge. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Sun Y, Lu X, Shen G, Ji X. Accelerate the ePC-SAFT-DFT Calculation with the Chebyshev Pseudospectral Collocation Method. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunhao Sun
- Division of Energy Science/Energy Engineering, Luleå University of Technology, 97187 Luleå, Sweden
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Gulou Shen
- National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xiaoyan Ji
- Division of Energy Science/Energy Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
7
|
|
8
|
Bakhshandeh A, Segala M, Colla T. Electrolytes in regimes of strong confinement: surface charge modulations, osmotic equilibrium and electroneutrality. SOFT MATTER 2020; 16:10488-10505. [PMID: 33073284 DOI: 10.1039/d0sm01386b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the present work, we study an electrolyte solution confined between planar surfaces with nanopatterned charged domains, which has been connected to a bulk ionic reservoir. The system is investigated through an improved Monte Carlo (MC) simulation method, suitable for simulation of electrolytes in the presence of modulated surface charge distributions. We also employ a linear approach in the spirit of the classical Debye-Hückel approximation, which allows one to obtain explicit expressions for the averaged potentials, ionic profiles, effective surface interactions and the net ionic charge confined between the walls. Emphasis is placed on the limit of strongly confined electrolytes, in which case local electroneutrality in the inter-surface space might not be fulfilled. In order to access the effects of such a lack of local charge neutrality on the ion-induced interactions between surfaces with modulated charge domains, we consider two distinct model systems for the confined electrolyte: one in which a salt reservoir is explicitly taken into account via the osmotic equilibrium with an electrolyte of fixed bulk concentration, and a second one in which the equilibrium with a charge neutral ionic reservoir is implicitly considered. While in the former case the osmotic ion exchange might lead to non-vanishing net charges, in the latter model charge neutrality is enforced through the appearance of an implicit Donnan potential across the charged interfaces. A strong dependence of the ion-induced surface interactions on the employed model system is observed at all surface separations. These findings strongly suggest that due care is to be taken while choosing among different scenarios to describe the ion exchange in electrolytes confined between charged surfaces, even in cases when the monopole (non zero net charge) surface contributions are absent.
Collapse
Affiliation(s)
- Amin Bakhshandeh
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil. and Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| | - Maximiliano Segala
- Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| | - Thiago Colla
- Instituto de Física, Universidade Federal de Ouro Preto, 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
9
|
Ion selectivity by charged spherical cavities and investigation of intersection point for average cavity density versus electric potential (a DFT study). J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Ma K, Lian C, Woodward CE, Qin B. Classical density functional theory reveals coexisting short-range structural decay and long-range force decay in ionic liquids. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Kanduč M, Kim WK, Roa R, Dzubiella J. Aqueous Nanoclusters Govern Ion Partitioning in Dense Polymer Membranes. ACS NANO 2019; 13:11224-11234. [PMID: 31553560 PMCID: PMC6812065 DOI: 10.1021/acsnano.9b04279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/25/2019] [Indexed: 05/28/2023]
Abstract
The uptake and sorption of charged molecules by responsive polymer membranes and hydrogels in aqueous solutions is of key importance for the development of soft functional materials. Here, we investigate the partitioning of simple monatomic (Na+, K+, Cs+, Cl-, I-) and one molecular ion (4-nitrophenolate; NP-) within a dense, electroneutral poly(N-isopropylacrylamide) membrane using explicit-water molecular dynamics simulations. Inside the predominantly hydrophobic environment, water distributes in a network of polydisperse water nanoclusters. The average cluster size determines the mean electrostatic self-energy of the simple ions, which preferably reside deeply inside them; we therefore find substantially larger partition ratios K ≃10-1 than expected from a simple Born picture using a uniform dielectric constant. Despite their irregular shapes, we observe that the water clusters possess a universal negative electrostatic potential with respect to their surroundings, as is known for aqueous liquid-vapor interfaces. This potential, which we find concealed in cases of symmetric monatomic salts, can dramatically impact the transfer free energies of larger charged molecules because of their weak hydration and increased affinity to interfaces. Consequently, and in stark contrast to the simple ions, the molecular ion NP- can have a partition ratio much larger than unity, K ≃10-30 (depending on the cation type) or even 103 in excess of monovalent salt, which explains recent observations of enhanced reaction kinetics of NP- reduction catalyzed within dense polymer networks. These results also suggest that ionizing a molecule can even enhance the partitioning in a collapsed, rather hydrophobic gel, which strongly challenges the traditional simplistic reasoning.
Collapse
Affiliation(s)
- Matej Kanduč
- Jožef
Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Won Kyu Kim
- Korea
Institute for Advanced Study, 85 Hoegiro, Seoul 02455, Republic of Korea
- Freie
Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
- Research
Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Rafael Roa
- Departamento
de Física Aplicada I, Facultad de
Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Joachim Dzubiella
- Research
Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Applied
Theoretical
Physics—Computational Physics, Physikalisches
Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Ali BA, Allam NK. A first-principles roadmap and limits to design efficient supercapacitor electrode materials. Phys Chem Chem Phys 2019; 21:17494-17511. [DOI: 10.1039/c9cp02614b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A road map to guide researchers to predict the desired properties is presented based on the DFT calculations to allow researchers decide which property of the material they wish to predict or develop and how to choose the proper DFT route to do so.
Collapse
Affiliation(s)
- Basant A. Ali
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| | - Nageh K. Allam
- Energy Materials Laboratory
- School of Sciences and Engineering
- The American University in Cairo
- New Cairo 11835
- Egypt
| |
Collapse
|
13
|
Khan MS, Karatrantos AV, Ohba T, Cai Q. The effect of different organic solvents and anion salts on sodium ion storage in cylindrical carbon nanopores. Phys Chem Chem Phys 2019; 21:22722-22731. [DOI: 10.1039/c9cp03332g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article fully atomistic Molecular Dynamics simulations were employed to study the behaviour of electrolyte salts and different organic solvents in cylindrical carbon nanotubes, in order to reveal the storage mechanism.
Collapse
Affiliation(s)
- M. S. Khan
- Graduate School of Science
- Chiba University
- Inage
- Japan
| | - A. V. Karatrantos
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
- Luxemburg Institute of Science and Technology
| | - T. Ohba
- Graduate School of Science
- Chiba University
- Inage
- Japan
| | - Q. Cai
- Department of Chemical and Process Engineering
- University of Surrey
- Guildford GU2 7XH
- UK
| |
Collapse
|