1
|
Jia J, Yang S, Li J, Liang Y, Li R, Tsuji T, Niu B, Peng B. Review of the Interfacial Structure and Properties of Surfactants in Petroleum Production and Geological Storage Systems from a Molecular Scale Perspective. Molecules 2024; 29:3230. [PMID: 38999184 PMCID: PMC11243718 DOI: 10.3390/molecules29133230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Surfactants play a crucial role in tertiary oil recovery by reducing the interfacial tension between immiscible phases, altering surface wettability, and improving foam film stability. Oil reservoirs have high temperatures and high pressures, making it difficult and hazardous to conduct lab experiments. In this context, molecular dynamics (MD) simulation is a valuable tool for complementing experiments. It can effectively study the microscopic behaviors (such as diffusion, adsorption, and aggregation) of the surfactant molecules in the pore fluids and predict the thermodynamics and kinetics of these systems with a high degree of accuracy. MD simulation also overcomes the limitations of traditional experiments, which often lack the necessary temporal-spatial resolution. Comparing simulated results with experimental data can provide a comprehensive explanation from a microscopic standpoint. This article reviews the state-of-the-art MD simulations of surfactant adsorption and resulting interfacial properties at gas/oil-water interfaces. Initially, the article discusses interfacial properties and methods for evaluating surfactant-formed monolayers, considering variations in interfacial concentration, molecular structure of the surfactants, and synergistic effect of surfactant mixtures. Then, it covers methods for characterizing microstructure at various interfaces and the evolution process of the monolayers' packing state as a function of interfacial concentration and the surfactants' molecular structure. Next, it examines the interactions between surfactants and the aqueous phase, focusing on headgroup solvation and counterion condensation. Finally, it analyzes the influence of hydrophobic phase molecular composition on interactions between surfactants and the hydrophobic phase. This review deepened our understanding of the micro-level mechanisms of oil displacement by surfactants and is beneficial for screening and designing surfactants for oil field applications.
Collapse
Affiliation(s)
- Jihui Jia
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
- International Institute for Carbon-Neutral Energy Research (ICNER), Kyushu University, Fukuoka 8190395, Japan
| | - Shu Yang
- State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Beijing 100083, China
| | - Jingwei Li
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yunfeng Liang
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 1138656, Japan
| | - Rongjuan Li
- School of Urban Construction, Zhejiang Shuren University, Hangzhou 310015, China
| | - Takeshi Tsuji
- International Institute for Carbon-Neutral Energy Research (ICNER), Kyushu University, Fukuoka 8190395, Japan
- Department of Systems Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 1138656, Japan
| | - Ben Niu
- CNPC Engineering Technology Research Company Limited, Tianjin 300451, China
| | - Bo Peng
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
2
|
Dutta N, Mitra S, Nirmalkar N. Understanding the Role of Surface Charge on Nanobubble Capillary Bridging during Particle-Particle Interaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4475-4488. [PMID: 38356240 DOI: 10.1021/acs.langmuir.3c03963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The interactions between particles due to long-range hydrophobic forces have been extensively investigated. The hydrophobic force is likely a capillary force that arises from the formation of capillary bridges due to the merging of nanobubbles. In this study, we aim to investigate the impact of the nanobubble surface charge on the capillary bridge and, subsequently, the interaction between particles. The surface charge of the nanobubbles was altered in the presence of various surfactants (cationic, anionic, and nonionic) and salts (mono-, di-, and trivalent). The particle-particle interaction was quantified by measuring the aggregate size of the hydrophobized glass particles. Both experimental and theoretical findings confirm that the interaction between particles was enhanced when the surface potential of the nanobubble was around the neutral regime. This is probably because, when the surface potential was close to neutral, the interaction between two surface-deposited nanobubbles dominated over electrostatic repulsion, which was more conducive to the formation of the nanobubble capillary bridge. The estimation of the constrained Gibbs potential also showed the capillary bridge to be more stable when surface charge density along the bridge gas-liquid interface was minimal.
Collapse
Affiliation(s)
- Nilanjan Dutta
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Subhasish Mitra
- ARC Center of Excellence for Enabling Eco-efficient Beneficiation of Minerals, School of Engineering, The University of Newcastle, New South Wales 2308, Australia
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Punjab 140001, India
| |
Collapse
|
3
|
Lin Y, Tang W, Xiao P, Ma J, Han X, Xu X, Luo J, Zhao S. Synergistic Effect of Salt and Anionic Surfactants on Interfacial Tension Reduction: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12392-12401. [PMID: 37620996 DOI: 10.1021/acs.langmuir.3c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Surfactants are commonly utilized in chemical flooding processes alongside salt to effectively decrease interfacial tension (IFT). However, the underlying microscopic mechanism for the synergistic effect of salt and surfactants on oil displacement remains ambiguous. Herein, the structure and properties of the interface between water and n-dodecane are studied by means of molecular dynamics simulations, considering three types of anionic surfactants and two types of salts. As the salt concentration (ρsalt) increases, the IFT first decreases to a minimum value, followed by a subsequent increase to higher values. The salt ions reduce the IFT only at low ρsalt due to the salt screening effect and ion bridging effect, both of which contribute to a decrease in the nearest head-to-head distance of surfactants. By incorporating salt doping, the IFTs can be reduced by at most 5%. Notably, the IFTs of different surfactants are mainly determined by the hydrogen bond interactions between oxygen atoms in the headgroup and water molecules. The presence of a greater number of oxygen atoms corresponds to lower IFT values. Specifically, for alkyl ethoxylate sulfate, the ethoxy groups play a crucial role in reducing the IFTs. This study provides valuable insights into formulating anionic surfactants that are applicable to oil recovery processes in petroleum reservoirs using saline water.
Collapse
Affiliation(s)
- Yutong Lin
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiqiang Tang
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Peiwen Xiao
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
- Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China
| | - Jule Ma
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xue Han
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
- Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhui Luo
- Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
- Key Laboratory of Nano Chemistry (KLNC), CNPC, Beijing 100083, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Microscopic mechanisms of MgCl2 affecting anionic surfactant adsorption kinetics on the air water interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhou L, Yan Y, Li S, Wang K. Molecular dynamic simulation study on formation of water channel in oil film detachment process controlled by surfactant polarity. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
|
7
|
Chen H, Gizzatov A, Abdel-Fattah AI. Molecular Assembly of Surfactant Mixtures in Oil-Swollen Micelles: Implications for High Salinity Colloidal Stability. J Phys Chem B 2020; 124:568-576. [PMID: 31887039 DOI: 10.1021/acs.jpcb.9b09929] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alkylbenzene sulfonates are one of the most important synthetic surfactant families, considering their wide applicability, cost-effectiveness, and overall consumption levels. Nevertheless, their low salt tolerance (especially divalent ion contents) prevented their wider applications such as enhanced oil recovery in high salinity reservoirs. Here, using experiments and atomistic molecular dynamics simulations, we demonstrated that the high salinity colloidal stability of alkylbenzene sulfonates can be dramatically increased by mixing with zwitterionic cosurfactants in oil-swollen micelles. By mixing with cosurfactants we had two important observations. (1) The polydispersity of surfactant mixture oil-swollen micelles were largely decreased due to the less rigid oil/water interfaces with mixed surfactants, which formed fewer but larger uniform micelles. (2) Strong dehydration of sulfonates due to the shielding from protruding more extended zwitterionic cosurfactants at the oil/water interfaces. Both observed molecular assembly characteristics triggered by the cosurfactants effectively reduced the total exposures of sulfonates to water phase that may form divalent ion bridging and large aggregates, and thus increased their high salinity colloidal stability. Lastly, it was observed that the dehydration of sulfonates was the highest at flat oil/water interfaces (very large oil-swollen micelles), which justified that adding trace amount of mineral oils may boost the high salinity colloidal stability even further.
Collapse
Affiliation(s)
- Hsieh Chen
- Aramco Services Company: Aramco Research Center-Boston , 400 Technology Square , Cambridge , Massachusetts 02139 , United States
| | - Ayrat Gizzatov
- Aramco Services Company: Aramco Research Center-Boston , 400 Technology Square , Cambridge , Massachusetts 02139 , United States
| | - Amr I Abdel-Fattah
- EXPEC ARC, Reservoir Engineering Technology Division , Saudi Aramco , Dhahran 31311 , Saudi Arabia
| |
Collapse
|