1
|
Luo J, Arnot DJ, King ST, Kingan A, Nicoll A, Tong X, Bock DC, Takeuchi ES, Marschilok AC, Yan S, Wang L, Takeuchi KJ. Two-Dimensional Siloxene Nanosheets: Impact of Morphology and Purity on Electrochemistry. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24306-24318. [PMID: 37163664 DOI: 10.1021/acsami.3c00355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two-dimensional (2D) siloxene (Si6O3H6) has shown promise as a negative electrode material for Li-ion batteries due to its high gravimetric capacity and superior mechanical properties under (de)lithiation compared to bulk Si. In this work, we prepare purified siloxene nanosheets through the removal of bulk Si contaminants, use ultrasonication to control the lateral size and thickness of the nanosheets, and probe the effects of the resulting morphology and purity on the electrochemistry. The thin siloxene nanosheets formed after 4 h of ultrasonication deliver an average capacity of 810 mA h/g under a 1000 mA/g rate over 200 cycles with a capacity retention of 76%. Interestingly, the purified siloxene shows lower initial capacity but superior capacity retention over extended cycling. The 2D morphology benefit is illustrated where the parent siloxene nanosheet morphology and structure were largely maintained based on operando optoelectrochemistry, in situ Raman, ex situ scanning electron microscopy, and ex situ transmission electron microscopy. Furthermore, the purified siloxene-based electrode free from crystalline Si impurity experiences the least expansion upon (de)lithiation as visualized by cross-section electron microscopy of samples recovered post-cycling.
Collapse
Affiliation(s)
- Jessica Luo
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - David J Arnot
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Steven T King
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Arun Kingan
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Andrew Nicoll
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Xiao Tong
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - David C Bock
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Esther S Takeuchi
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Amy C Marschilok
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Shan Yan
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Lei Wang
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Kenneth J Takeuchi
- Institute of Energy: Sustainability, Environment and Equity, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Interdisciplinary Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| |
Collapse
|
2
|
Chen Z, Zhang H, Dong T, Mu P, Rong X, Li Z. Uncovering the Chemistry of Cross-Linked Polymer Binders via Chemical Bonds for Silicon-Based Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47164-47180. [PMID: 33043666 DOI: 10.1021/acsami.0c12519] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Great efforts have been devoted to the development of high-energy-density lithium-ion batteries (LIBs) to meet the requirements of emerging technologies such as electric cars, large-scale energy storage, and portable electronic devices. To this end, silicon-based electrodes have been increasingly regarded as promising electrode materials by virtue of their high theoretical capacity, low costs, environmental friendliness, and high natural abundance. It has been noted that during repeated cycling, severe challenges such as huge volume change remain to be solved prior to practical application, which boosts the development of advanced cross-linked binders via chemical bonds (CBCBs) beyond traditional PVDF binder. This is because CBCBs can effectively fix the electrode particles, inhibit the volume expansion of Si particles, and stabilize the solid electrolyte interface and thus can enable good cycling stability of silicon anode-based batteries. In light of these merits, CBCBs hence arouse much attention from both industry and academia. In this review, we present chemical/mechanical characteristics of CBCBs and systematically discuss the recent advancements of cross-linked binders via chemical bonding for silicon-based electrodes. Focus is placed on the cross-linking chemistries, construction methods and structure-performance relationships of CBCBs. Finally, the future development and performance optimization of CBCBs are proposed. This discussion will provide good insight into the structural design of CBCBs for silicon-based electrodes.
Collapse
Affiliation(s)
- Zhou Chen
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266101, China
| | - Huanrui Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Tiantian Dong
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Pengzhou Mu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Xianchao Rong
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266101, China
| | - Zhongtao Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266101, China
| |
Collapse
|
5
|
Loaiza LC, Monconduit L, Seznec V. Si and Ge-Based Anode Materials for Li-, Na-, and K-Ion Batteries: A Perspective from Structure to Electrochemical Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905260. [PMID: 31922657 DOI: 10.1002/smll.201905260] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Silicon and germanium are among the most promising candidates as anodes for Li-ion batteries, meanwhile their potential application in sodium- and potassium-ion batteries is emerging. The access of their entire potential requires a comprehensive understanding of their electrochemical mechanism. This Review highlights the processes taking place during the alloying reaction of Si and Ge with the alkali ions. Several associated challenges, including the volumetric expansion, particle pulverization, and uncontrolled formation of solid electrolyte interphase layer must be surmounted and different strategies, such as nanostructures and electrode formulation, have been implemented. Additionally, a new approach based on the use of layered Si and Ge-based Zintl phases is presented. The versatility of this new family permits the tuning of their physical and chemical properties for specific applications. For batteries in particular, the layered structure buffers the volume expansion and exhibits an enhanced electronic conductivity, allowing high power applications.
Collapse
Affiliation(s)
- Laura C Loaiza
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, 15 Rue Baudelocque, 80039, Amiens Cedex, France
| | - Laure Monconduit
- Institut Charles Gerhardt Montpellier, Université de Montpellier, CNRS, 34095, Montpellier, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), 15 Rue Baulocque, 80039, Amiens Cedex, France
- ALISTORE European Research Institute, Université de Picardie Jules Verne, 15 Rue Baulocque, 80039, Amiens Cedex, France
| | - Vincent Seznec
- Laboratoire de Réactivité et Chimie des Solides (LRCS), Université de Picardie Jules Verne, 15 Rue Baudelocque, 80039, Amiens Cedex, France
- Réseau sur le Stockage Electrochimique de l'Energie (RS2E), 15 Rue Baulocque, 80039, Amiens Cedex, France
- ALISTORE European Research Institute, Université de Picardie Jules Verne, 15 Rue Baulocque, 80039, Amiens Cedex, France
| |
Collapse
|