1
|
Zhao L, Jiang S, He Y, Wu L, James TD, Chen J. Excited-state dynamics of 4-hydroxyisoindoline-1,3-dione and its derivative as fluorescent probes. Phys Chem Chem Phys 2024; 26:13506-13514. [PMID: 38651980 DOI: 10.1039/d3cp05777a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Fluorescent probes have become promising tools for monitoring the concentration of peroxynitrite, which is linked to many diseases. However, despite focusing on developing numerous peroxynitrite based fluorescent probes, limited emphasis is placed on their sensing mechanism. Here, we investigated the sensing mechanism of a peroxynitrite fluorescent probe, named BHID-Bpin, with a focus on the relevant excited state dynamics. The photoexcited BHID-Bpin relaxes to its ground state via an efficient nonradiative process (∼300 ps) due to the presence of a minimum energy conical intersection between its first excited state and ground state. However, upon reacting with peroxynitrite, the Bpin moiety is cleaved from BHID-Bpin and BHID is formed. The formed BHID exhibits strong dual band fluorescence which is caused by an ultrafast excited-state intramolecular proton transfer process (∼1 ps).
Collapse
Affiliation(s)
- Li Zhao
- College of Science, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Simin Jiang
- Nano-Science Center & Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 KøbenhavnØ, Denmark.
| | - Yanmei He
- Nano-Science Center & Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 KøbenhavnØ, Denmark.
- Department of Chemical Physics and NanoLund, Lund University, P. O. Box 124, 22100 Lund, Sweden
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Junsheng Chen
- Nano-Science Center & Department of Chemistry University of Copenhagen, Universitetsparken 5, 2100 KøbenhavnØ, Denmark.
| |
Collapse
|
2
|
Zhao S, Meng F, Li X, Zhao J, Tang Z. Elaborating and regulating ESIPT associated with solvent polarity for the novel 2-(benzo[d]thiazol-2-yl)-4-(9H-diphenylamino-9-yl)phenol fluorophore. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2186718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Shulin Zhao
- College of Physical Science and Technology, Shenyang Normal University, Shenyang, People’s Republic of China
| | - Fanmiao Meng
- College of Physical Science and Technology, Shenyang Normal University, Shenyang, People’s Republic of China
| | - Xiaoxiao Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, People’s Republic of China
| | - Jinfeng Zhao
- College of Physical Science and Technology, Shenyang Normal University, Shenyang, People’s Republic of China
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, People’s Republic of China
| | - Zhe Tang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, People’s Republic of China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, People’s Republic of China
| |
Collapse
|
3
|
Wen J, Xia Y, Ding S, Liu Y. Theoretical investigation of the Zn 2+ detection mechanism based on the quinoline derivative of the Schiff-base receptor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122123. [PMID: 36423505 DOI: 10.1016/j.saa.2022.122123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The sensing mechanism of the quinoline-derived Schiff base HL (concentrated from 8-hydroxyquinoline with 2,4-dihydroxybenzaldehyde) as a highly selective fluorescent probe for Zn2+ was investigated by theoretical calculations with DFT and TDDFT. The conformations of the HL molecule, its ketone form and its Zinc complex structure, were optimized in the ground and excited states. The systems have been studied in depth in terms of structural parameters, frontier molecular orbitals, absorption and fluorescence spectra as well as potential energy curves analysis and approximately density gradient analysis. The present theoretical calculations propose a different detection mechanism from that proposed experimentally. The theoretical results predict that the fluorescence quenching in HL is attributed to the excited state intramolecular proton transfer (ESIPT) rather than the photoinduced electron transfer (PET) of benzene to electrons. When Zn2+ is introduced, Zn2+ takes the place of the H atom, creating a complex that blocks the ESIPT reaction and restores fluorescence.
Collapse
Affiliation(s)
- Jinrong Wen
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Sha Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Yuejun Liu
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
4
|
Yi SZ, Li BN, Fu PY, Pan M, Su CY. Interplay of Dual-Proton Transfer Relay to Achieve Full-Color Panel Luminescence in Excited-State Intramolecular Proton Transfer (ESIPT) Fluorophores. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3172-3181. [PMID: 36621007 DOI: 10.1021/acsami.2c20129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A new design was applied for the facile synthesis of pure organic photoluminescent molecules with dual excited-state intramolecular proton transfer (ESIPT) sites. In this novel class of emitters, full-color panel emission from blue, green, and yellow to red, including white light, can be achieved in different solvents as modulated by the enol-keto(1st)-keto(2nd) tautomer emissions. A comprehensive transient photophysical study verifies that keto(1st) and keto(2nd) have a precursor (<0.8 ps)-successor (∼20 ps)-relayed absorbance relationship, and then a fast equilibrium between the two is established, resulting in dual emissions in the nanosecond scale (∼1900 ps). Through the research on copper ions' selective PL response, the dual-ESIPT mechanism was further verified; in addition, the study of solid-state PL changes upon the stimulus of organic vapor manifests the potential application sensitivity of the molecules as dual-ESIPT sensors. Theoretical results including reaction potential energy surface analyses manifest the fact that dual-proton transfer goes along a sequential route with a smaller energy barrier, firmly supporting the experimental results. An intrinsic system that undergoes intramolecular double proton relayed transfer is thus established for the achievement of much broadened optical responses and full-color display, providing reference for the design and application of advanced dual-ESIPT optical materials.
Collapse
Affiliation(s)
- Shao-Zhe Yi
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Bao-Ning Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, P. R. China
| | - Peng-Yan Fu
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Mei Pan
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| | - Cheng-Yong Su
- Lehn Institute of Functional Materials, MOE Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, 132 East Waihuan Road, Panyu District, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Meng X, Song L, Han H, Zhao J, Zheng D. Solvent polarity dependent ESIPT behavior for the novel flavonoid-based solvatofluorochromic chemosensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120383. [PMID: 34536893 DOI: 10.1016/j.saa.2021.120383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/07/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
In this work, we explore the excited-state intramolecular proton transfer (ESIPT) mechanisms and relative solvent effects for three novel 3-hydroxylflavone derivatives (i.e., HOF, SHOF, and NSHOF) in acetonitrile, dichloromethane, and toluene solvents. Through calculations, we optimize the structures of HOF, SHOF, and NSHOF. Through the analysis of a series of structural parameters related to hydrogen bonding interactions, it could be found that the hydrogen bonds of the three derivatives are all enhanced in the S1 state, and more importantly, the excited-state hydrogen bonds of HOF are stronger than those of SHOF and NSHOF. In order to explore the effects of solvent polarity, we analyze the core-valence bifurcation (CVB) index, infrared (IR) vibration spectrum, and the potential energy curves. We find that for HOF, SHOF, and NSHOF, the strength of the excited-state hydrogen bonds increases as the solvent polarity decreases. The solvent polarity dependent ESIPT mechanisms pave the way for further designing novel flavonoid-based solvatofluorochromic probes in future.
Collapse
Affiliation(s)
- Xuan Meng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Liying Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Haiyun Han
- People's Hospital of Dingtao District, Heze, Shandong Province 274199, China
| | - Jinfeng Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Li Y, Wang Y, Feng X, Zhao Y. Spectroscopic and mechanistic insights into solvent mediated excited-state proton transfer and aggregation-induced emission: introduction of methyl group onto 2-( o-hydroxyphenyl)benzoxazole. Phys Chem Chem Phys 2022; 24:26297-26306. [DOI: 10.1039/d2cp03007a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
2-(2-Hydroxy-5-methylphenyl)benzoxazole(HBO-pCH3), a solvatochromic benzoxazole-based probe, exhibited a typical dual fluorescence phenomenon, high fluorescence quantum yield, red-shifted emission and large Stokes’ shift via the ESIPT in solvents.
Collapse
Affiliation(s)
- Yu Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuanyue Wang
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoqing Feng
- School of Pharmacy & School of Medicine, Changzhou University, Changzhou 213164, China
| | - Yanying Zhao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
7
|
Theoretical investigations on forward-backward ESIPT processes of three fluorophores deriving from 2-(2'-hydroxyphenyl)thiazole. Photochem Photobiol Sci 2021; 20:533-546. [PMID: 33788175 DOI: 10.1007/s43630-021-00036-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
The photophysical properties and excited-state intramolecular proton transfer (ESIPT) processes for 2-(2'-hydroxyphenyl)-4-chloromethylthiazole (1), 2-(2'-hydroxyphenyl)-4-phenylthiazole (2), 2-(2'-hydroxyphenyl)-4-hydroxymethyl-thiazole (3) were studied at the TD-B3PW91/6-31 + G(d, p)/IEFPCM level. The structures of 1-3 were fully optimized and the corresponding structural parameters, infrared spectra and electron densities in the ground (S0) and the first excited (S1) states were analyzed. The calculated absorption and fluorescence wavelengths of 1-3 reproduced the experimental data. The potential energy curves of the S0 and S1 states were built and the ESIPT processes were clarified. Our results showed that the intramolecular H-bonds of 3 and 2 in the S1 state were the strongest and the weakest, respectively, and then the ESIPT potential barriers of 3 and 2 were the lowest and highest, respectively. Among the three phenol-thiazole type probes, the compound 2 with phenyl ring group at the 4 position of the thiazole ring had the larger π-conjugation, and had the higher ESIPT potential barrier at the same time. The corresponding compound 1 and 3 with CH2Cl and CH2OH had the lower ESIPT barrier.
Collapse
|
8
|
Zhao J, Jin B. Unraveling photo-excited behaviors and proton transfer mechanisms for coexisting 5-methoxy-salicylaldhyde azine isomers. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Li J, Feng S, Xu L, Feng X. Fluoride anion sensing mechanism of 2‐(quinolin‐2‐yl)‐3‐hydroxy‐4
H
‐chromen‐4‐one chemosensor based on inhibition of excited state intramolecular ultrafast proton transfer. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Junyu Li
- College of Physics and Electronic Engineering Zhengzhou University of Light Industry Zhengzhou China
| | - Shiquan Feng
- College of Physics and Electronic Engineering Zhengzhou University of Light Industry Zhengzhou China
| | - Liancai Xu
- Department of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou China
| | - Xuechao Feng
- College of Physics and Electronic Engineering Zhengzhou University of Light Industry Zhengzhou China
| |
Collapse
|