1
|
Sun Q, Zeng G, Li J, Wang S, Botifoll M, Wang H, Li D, Ji F, Cheng J, Shao H, Tian Y, Arbiol J, Cabot A, Ci L. Is Soft Carbon a More Suitable Match for SiO x in Li-Ion Battery Anodes? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302644. [PMID: 37144432 DOI: 10.1002/smll.202302644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/21/2023] [Indexed: 05/06/2023]
Abstract
Silicon oxide (SiOx ), inheriting the high-capacity characteristic of silicon-based materials but possessing superior cycling stability, is a promising anode material for next-generation Li-ion batteries. SiOx is typically applied in combination with graphite (Gr), but the limited cycling durability of the SiOx /Gr composites curtails large-scale applications. In this work, this limited durability is demonstrated in part related to the presence of a bidirectional diffusion at the SiOx /Gr interface, which is driven by their intrinsic working potential differences and the concentration gradients. When Li on the Li-rich surface of SiOx is captured by Gr, the SiOx surface shrinks, hindering further lithiation. The use of soft carbon (SC) instead of Gr can prevent such instability is further demonstrated. The higher working potential of SC avoids bidirectional diffusion and surface compression thus allowing further lithiation. In this scenario, the evolution of the Li concentration gradient in SiOx conforms to its spontaneous lithiation process, benefiting the electrochemical performance. These results highlight the focus on the working potential of carbon as a strategy for rational optimization of SiOx /C composites toward improved battery performance.
Collapse
Affiliation(s)
- Qing Sun
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Guifang Zeng
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona, 08028, Spain
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Jing Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Shang Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Marc Botifoll
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Hao Wang
- Land Transport Authority of Singapore, Singapore, 179102, Singapore
| | - Deping Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fengjun Ji
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jun Cheng
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Huaiyu Shao
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR, 999078, China
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, 08193, Spain
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona, 08930, Spain
- ICREA Pg. Lluis Companys, Barcelona, 08010, Spain
| | - Lijie Ci
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| |
Collapse
|
2
|
Wang S, Zeng G, Sun Q, Feng Y, Wang X, Ma X, Li J, Zhang H, Wen J, Feng J, Ci L, Cabot A, Tian Y. Flexible Electronic Systems via Electrohydrodynamic Jet Printing: A MnSe@rGO Cathode for Aqueous Zinc-Ion Batteries. ACS NANO 2023. [PMID: 37411016 DOI: 10.1021/acsnano.3c00672] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Aqueous zinc-ion batteries (ZIBs) are promising candidates to power flexible integrated functional systems because they are safe and environmentally friendly. Among the numerous cathode materials proposed, Mn-based compounds, particularly MnO2, have attracted special attention because of their high energy density, nontoxicity, and low cost. However, the cathode materials reported so far are characterized by sluggish Zn2+ storage kinetics and moderate stabilities. Herein, a ZIB cathode based on reduced graphene oxide (rGO)-coated MnSe nanoparticles (MnSe@rGO) is proposed. After MnSe was activated to α-MnO2, the ZIB exhibits a specific capacity of up to 290 mAh g-1. The mechanism underlying the improvement in the electrochemical performance of the MnSe@rGO based electrode is investigated using a series of electrochemical tests and first-principles calculations. Additionally, in situ Raman spectroscopy is used to track the phase transition of the MnSe@rGO cathodes during the initial activation, proving the structural evolution from the LO to MO6 mode. Because of the high mechanical stability of MnSe@rGO, flexible miniaturized energy storage devices can be successfully printed using a high-precision electrohydrodynamic (EHD) jet printer and integrated with a touch-controlled light-emitting diode array system, demonstrating the application of flexible EHD jet-printed microbatteries.
Collapse
Affiliation(s)
- Shang Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 45004, China
| | - Guifang Zeng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
- Department of Electronic and Biomedical Engineering, Universitat de Barcelona, Barcelona 08028, Spain
| | - Qing Sun
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yan Feng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Xinxin Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Xinyang Ma
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Li
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - He Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Jiayue Wen
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 45004, China
| | - Jiayun Feng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
| | - Lijie Ci
- State Key Laboratory of Advanced Welding and Joining, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
- ICREA Pg. Lluis Companys, Barcelona 08010, Spain
| | - Yanhong Tian
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 45004, China
| |
Collapse
|
7
|
Wang H, Ma J, Zhang J, Feng Y, Vijjapu MT, Yuvaraja S, Surya SG, Salama KN, Dong C, Wang Y, Kuang Q, Tshabalala ZP, Motaung DE, Liu X, Yang J, Fu H, Yang X, An X, Zhou S, Zi B, Liu Q, Urso M, Zhang B, Akande AA, Prasad AK, Hung CM, Van Duy N, Hoa ND, Wu K, Zhang C, Kumar R, Kumar M, Kim Y, Wu J, Wu Z, Yang X, Vanalakar SA, Luo J, Kan H, Li M, Jang HW, Orlandi MO, Mirzaei A, Kim HW, Kim SS, Uddin ASMI, Wang J, Xia Y, Wongchoosuk C, Nag A, Mukhopadhyay S, Saxena N, Kumar P, Do JS, Lee JH, Hong S, Jeong Y, Jung G, Shin W, Park J, Bruzzi M, Zhu C, Gerald RE, Huang J. Gas sensing materials roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33. [PMID: 33794513 DOI: 10.1088/1361-648x/abf477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/01/2021] [Indexed: 05/14/2023]
Abstract
Gas sensor technology is widely utilized in various areas ranging from home security, environment and air pollution, to industrial production. It also hold great promise in non-invasive exhaled breath detection and an essential device in future internet of things. The past decade has witnessed giant advance in both fundamental research and industrial development of gas sensors, yet current efforts are being explored to achieve better selectivity, higher sensitivity and lower power consumption. The sensing layer in gas sensors have attracted dominant attention in the past research. In addition to the conventional metal oxide semiconductors, emerging nanocomposites and graphene-like two-dimensional materials also have drawn considerable research interest. This inspires us to organize this comprehensive 2020 gas sensing materials roadmap to discuss the current status, state-of-the-art progress, and present and future challenges in various materials that is potentially useful for gas sensors.
Collapse
Affiliation(s)
- Huaping Wang
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Jianmin Ma
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Jun Zhang
- College of Physics, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, Zhengzhou University, Zhengzhou, 450002 Henan, People's Republic of China
| | - Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Saravanan Yuvaraja
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chengjun Dong
- School of Materials and Energy, Yunnan University, Kunming, People's Republic of China
| | - Yude Wang
- School of Materials and Energy, Yunnan University, Kunming, People's Republic of China
| | - Qin Kuang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People's Republic of China
| | - Zamaswazi P Tshabalala
- Department of Physics, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - David E Motaung
- Department of Physics, University of the Free State, PO Box 339, Bloemfontein ZA9300, South Africa
- Department of Physics, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Xianghong Liu
- College of Physics, Qingdao University, Qingdao 266071, People's Republic of China
| | - Junliang Yang
- School of Physics and Electronics, Central South University, Changsha 410083, People's Republic of China
| | - Haitao Fu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xiaohong Yang
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Northeastern University, Shenyang 110819, People's Republic of China
- School of Metallurgy, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xizhong An
- School of Metallurgy, Northeastern University, Shenyang 110819, People's Republic of China
| | - Shiqiang Zhou
- School of Materials Science and Engineering, Yunnan University, Kunming, People's Republic of China
| | - Baoye Zi
- School of Materials Science and Engineering, Yunnan University, Kunming, People's Republic of China
| | - Qingju Liu
- School of Materials Science and Engineering, Yunnan University, Kunming, People's Republic of China
| | - Mario Urso
- IMM-CNR and Dipartimento di Fisica e Astronomia 'Ettore Majorana', Università di Catania, via S Sofia 64, 95123 Catania, Italy
| | - Bo Zhang
- School of Internet of Things Engineering, Jiangnan University, Lihu Avenue 1800#, Wuxi, 214122, People's Republic of China
| | - A A Akande
- Department of Physics, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
- Advanced Internet of Things, CSIR NextGen Enterprises and Institutions, PO Box 395, Pretoria, 0001, South Africa
| | - Arun K Prasad
- Indira Gandhi Centre for Atomic Research, Homi Bhabha National Institute, Kalpakkam 603102, India
| | - Chu Manh Hung
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No 1-Dai Co Viet Str. Hanoi, Vietnam
| | - Nguyen Van Duy
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No 1-Dai Co Viet Str. Hanoi, Vietnam
| | - Nguyen Duc Hoa
- International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No 1-Dai Co Viet Str. Hanoi, Vietnam
| | - Kaidi Wu
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Chao Zhang
- College of Mechanical Engineering, Yangzhou University, People's Republic of China
| | - Rahul Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Jodhpur 342037, India
| | - Youngjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Republic of Korea
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - S A Vanalakar
- Department of Physics, Karmaveer Hire Arts, Science, Commerce and Education College, Gargoti 416-009, India
| | - Jingting Luo
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Hao Kan
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Min Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, People's Republic of China
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul 08826, Republic of Korea
| | - Marcelo Ornaghi Orlandi
- Department of of Engineering, Physics and Mathematics, São Paulo State University (UNESP), Araraquara - SP 14800-060, Brazil
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz, 71557-13876, Iran
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - A S M Iftekhar Uddin
- Department of Electrical and Electronic Engineering, Metropolitan University, Bateshwar, Sylhet-3103, Bangladesh
| | - Jing Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yi Xia
- Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Chatchawal Wongchoosuk
- Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Anindya Nag
- DGUT-CNAM Institute, Dongguan University of Technology, Dongguan, People's Republic of China
| | | | - Nupur Saxena
- Department of Physics and Astronomical Sciences, Central University of Jammu, Rahya-Suchani, Samba, Jammu, J&K-181143, India
| | - Pragati Kumar
- Department of Nanosciences and Materials, Central University of Jammu, Rahya-Suchani, Samba, Jammu, J & K -181143, India
| | - Jing-Shan Do
- Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan
| | - Jong-Ho Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seongbin Hong
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yujeong Jeong
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Gyuweon Jung
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Wonjun Shin
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jinwoo Park
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Mara Bruzzi
- Department of Physics and Astronomy, Unviersity of Florence, Via G. Sansone 1, Sesto Fiorentino, Florence, Italy
| | - Chen Zhu
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO65409, United States of America
| | - Rex E Gerald
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO65409, United States of America
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO65409, United States of America
| |
Collapse
|