1
|
Zhang F, Liu J, Hu L, Guo C. Recent Progress of Three-Dimensional Graphene-Based Composites for Photocatalysis. Gels 2024; 10:626. [PMID: 39451279 PMCID: PMC11507190 DOI: 10.3390/gels10100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Converting solar energy into fuels/chemicals through photochemical approaches holds significant promise for addressing global energy demands. Currently, semiconductor photocatalysis combined with redox techniques has been intensively researched in pollutant degradation and secondary energy generation owing to its dual advantages of oxidizability and reducibility; however, challenges remain, particularly with improving conversion efficiency. Since graphene's initial introduction in 2004, three-dimensional (3D) graphene-based photocatalysts have garnered considerable attention due to their exceptional properties, such as their large specific surface area, abundant pore structure, diverse surface chemistry, adjustable band gap, and high electrical conductivity. Herein, this review provides an in-depth analysis of the commonly used photocatalysts based on 3D graphene, outlining their construction strategies and recent applications in photocatalytic degradation of organic pollutants, H2 evolution, and CO2 reduction. Additionally, the paper explores the multifaceted roles that 3D graphene plays in enhancing photocatalytic performance. By offering a comprehensive overview, we hope to highlight the potential of 3D graphene as an environmentally beneficial material and to inspire the development of more efficient, versatile graphene-based aerogel photocatalysts for future applications.
Collapse
Affiliation(s)
- Fengling Zhang
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Jianxing Liu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Liang Hu
- School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
| | - Cean Guo
- School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China
| |
Collapse
|
2
|
Sharifi Malvajerdi S, Aboutorabi S, Shahnazi A, Gholamhosseini S, Taheri Ghahrizjani R, Yahyaee Targhi F, Erfanimanesh S, Beigverdi R, Imani A, Sari AH, Sun H, Saffarian P, Behmadi H, Nabid MR, Hosseini A, Abrari M, Ghanaatshoar M. HVHC-ESD-Induced Oxygen Vacancies: An Insight into the Phenomena of Interfacial Interactions of Nanostructure Oxygen Vacancy Sites with Oxygen Ion-Containing Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48785-48799. [PMID: 37647519 DOI: 10.1021/acsami.3c10017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The challenging environmental chemical and microbial pollution has always caused issues for human life. This article investigates the detailed mechanism of photodegradation and antimicrobial activity of oxide semiconductors and realizes the interface phenomena of nanostructures with toxins and bacteria. We demonstrate how oxygen vacancies in nanostructures affect photodegradation and antimicrobial behavior. Additionally, a novel method with a simple, tunable, and cost-effective synthesis of nanostructures for such applications is introduced to resolve environmental issues. The high-voltage, high-current electrical switching discharge (HVHC-ESD) system is a novel method that allows on-the-spot sub-second synthesis of nanostructures on top and in the water for wastewater decontamination. Experiments are done on rhodamine B as a common dye in wastewater to understand its photocatalytic degradation mechanism. Moreover, the antimicrobial mechanism of oxide semiconductors synthesized by the HVHC-ESD method with oxygen vacancies is realized on methicillin- and vancomycin-resistant Staphylococcus aureus strains. The results yield new insights into how oxygen ions in dyes and bacterial walls interact with the surface of ZnO with high oxygen vacancy, which results in breaking of the chemical structure of dyes and bacterial walls. This interaction leads to degradation of organic dyes and bacterial inactivation.
Collapse
Affiliation(s)
- Shahab Sharifi Malvajerdi
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shahrzad Aboutorabi
- Department of Biology, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran
| | - Azita Shahnazi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Saeb Gholamhosseini
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | | | - Fatemeh Yahyaee Targhi
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Soroor Erfanimanesh
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 1417613151 Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, 1417613151 Tehran, Iran
| | - Aref Imani
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
- Institute of Photonics, TU Wien, Gusshausstrasse, 27/3/387/ Vienna, Austria
| | - Amir Hossein Sari
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Parvaneh Saffarian
- Department of Biology, Science and Research Branch, Islamic Azad University, 1477893855 Tehran, Iran
| | - Homa Behmadi
- Department of Food Engineering and Postharvest Technology, Agricultural Engineering, Research Institute, Agricultural Research, Education and Extension Organization (AREEO), 3135933151 Karaj, Iran
| | - Mohammad Reza Nabid
- Department of Polymer Chemistry and Materials, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Alireza Hosseini
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Masoud Abrari
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Majid Ghanaatshoar
- Laser and Plasma Research Institute, Shahid Beheshti University, 1983969411 Tehran, Iran
| |
Collapse
|
3
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Javed Akhtar M, Ahamed M. One-step preparation, characterization, and anticancer potential of ZnFe 2O 4/RGO nanocomposites. Saudi Pharm J 2023; 31:101735. [PMID: 37638224 PMCID: PMC10448167 DOI: 10.1016/j.jsps.2023.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Zinc ferrite nanoparticles (ZnFe2O4 NPs) have attracted extensive attention for their diverse applications including sensing, waste-water treatment, and biomedicine. The novelty of the present work is the fabrication of ZnFe2O4/RGO NCs by using a one-step hydrothermal process to assess the influence of RGO doping on the physicochemical properties and anticancer efficacy of ZnFe2O4 NPs. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy-dispersive X-ray(EDX), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), UV-vis spectroscopy, and Photoluminescence (PL) spectroscopy were employed to characterize prepared pure ZnFe2O4 NPs and ZnFe2O4/ RGO NCs. XRD results showed that the synthesized samples have high crystallinity. Furthermore, the average crystal sizes of ZnFe2O4 nanoparticles (NPs) and ZnFe2O4/RGO nanocomposites (NCs) were 51.08 nm and 54.36 nm, respectively. SEM images revealed that pure ZnFe2O4 NPs were spherical in shape with uniformly loaded on the surface of the RGO nanosheet. XPS and EDX analysis confirmed the elemental compositions of ZnFe2O4/RGO NCs. Elemental mapping of SEM shows that the elemental compositions (Zn, Fe, O, and C) were homogeneously distributed in ZnFe2O4/RGO NCs. The intensity of FT-IR spectra depicted that pure ZnFe2O4 NPs were successfully anchored into the RGO nanosheet. An optical study suggested that the band gap energy of ZnFe2O4/RGO NCs (1.61 eV) was lower than that of pure ZnFe2O4 NPs (1.96 eV). PL spectra indicated that the recombination rate of the ZnFe2O4/ RGO NCs was lower than ZnFe2O4 NPs. MTT assay was used to evaluate the anticancer performance of ZnFe2O4 /RGO NCs and pure ZnFe2O4NPs against human cancer cells. In vitro study indicates that ZnFe2O4 /RGO NCs have higher anticancer activity against human breast (MCF-7) and lung (A549) cancer cells as compared to pure form ZnFe2O4 NPs. This work suggests that RGO doping enhances the anticancer activity of ZnFe2O4NPs by tuning its optical behavior. This study warrants future research on potential therapeutic applications of these types of nanocomposites.
Collapse
Affiliation(s)
- ZabnAllah M. Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hisham A. Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Javed Akhtar
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maqusood Ahamed
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Shabna S, Dhas SSJ, Biju C. Potential progress in SnO2 nanostructures for enhancing photocatalytic degradation of organic pollutants. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
5
|
Wary RR, Brahma D, Banoo M, Gautam UK, Kalita P, Baruah MB. Role of interfacial contact between 2D materials and preselected nanostructures in the degradation of toxic dyes: Multifunctional facets of graphene. ENVIRONMENTAL RESEARCH 2022; 214:113948. [PMID: 35940228 DOI: 10.1016/j.envres.2022.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Designing intimate interfacial contact between nanostructures and two-dimensional (2D) materials is highly desirable to influence the movement of generated charge carriers. Nanostructured zinc oxide (ZnO) is a fascinating material with unique optical and electrical properties. 2D reduced graphene oxide (rGO) exhibits semiconductor behaviour with tunable catalytic activity and excellent biocompatibility. Hence, we have designed a hybrid material by selecting nanostructures of an oxide semiconductor (ZnO) with reduced graphene oxide (rGO) using a hard integration technique followed by a low-temperature hydrothermal route. The good encapsulation of rGO over the ZnO nanorods was confirmed by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The photocatalytic activities of ZnO, rGO, and ZnO/rGO were studied under visible-light irradiation using three different toxic dyes, methylene blue (MB), methyl orange (MO), and Congo red (CR). The composite materials exhibited excellent efficiencies of 100, 95, and 90% for the degradation of MB, MO, and CR, respectively. Moreover, the degradation of the dye was found to follow first-order kinetics. The enhanced efficiencies are attributed to the adsorption and efficient charge transfer from rGO to the conduction band of ZnO. The role of the multifunctional facets of graphene was presented to elucidate the visible-light activity of the composite materials for enhanced efficiency. The main reactive species (e-) of the reduction reaction were confirmed through a radical trapping experiment, which showed the generation of highly reactive •OH radicals that decompose the toxic dye. The results provide a perspective for developing graphene-based composite materials with desired preselected nanostructures for solar energy utilisation.
Collapse
Affiliation(s)
- Riu Riu Wary
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India
| | - Dulu Brahma
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India
| | - Maqsuma Banoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India
| | - Pranjal Kalita
- Department of Chemistry, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India.
| | - Manasi Buzar Baruah
- Department of Physics, Central Institute of Technology Kokrajhar (Deemed to be University, MoE, Govt. of India), Kokrajhar, 783370, Assam, India.
| |
Collapse
|
6
|
Farhan A, Rashid EU, Waqas M, Ahmad H, Nawaz S, Munawar J, Rahdar A, Varjani S, Bilal M. Graphene-based nanocomposites and nanohybrids for the abatement of agro-industrial pollutants in aqueous environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119557. [PMID: 35709916 DOI: 10.1016/j.envpol.2022.119557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/28/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Incessant release of a large spectrum of agro-industrial pollutants into environmental matrices remains a serious concern due to their potential health risks to humans and aquatic animals. Existing remediation techniques are unable to remove these pollutants, necessitating the development of novel treatment approaches. Due to its unique structure, physicochemical properties, and broad application potential, graphene has attracted a lot of attention as a new type of two-dimensional nanostructure. Given its chemical stability, large surface area, electron mobility, superior thermal conductivity, and two-dimensional structure, tremendous research has been conducted on graphene and its derived composites for environmental remediation and pollution mitigation. Various methods for graphene functionalization have facilitated the development of different graphene derivatives such as graphene oxide (GO), functional reduced graphene oxide (frGO), and reduced graphene oxide (rGO) with novel attributes for multiple applications. This review provides a comprehensive read on the recent progress of multifunctional graphene-based nanocomposites and nanohybrids as a promising way of removing emerging contaminants from aqueous environments. First, a succinct overview of the fundamental structure, fabrication techniques, and features of graphene-based composites is presented. Following that, graphene and GO functionalization, i.e., covalent bonding, non-covalent, and elemental doping, are discussed. Finally, the environmental potentials of a plethora of graphene-based hybrid nanocomposites for the abatement of organic and inorganic contaminants are thoroughly covered.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Haroon Ahmad
- Department of Chemistry, University of Agriculture Faisalabad, 38040, Faisalabad, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Junaid Munawar
- College of Chemistry, Beijing University of Chemical Technology, 100013, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, P. O. Box. 98613-35856, Zabol, Iran
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
7
|
One-Pot Synthesis of SnO 2-rGO Nanocomposite for Enhanced Photocatalytic and Anticancer Activity. Polymers (Basel) 2022; 14:polym14102036. [PMID: 35631918 PMCID: PMC9144687 DOI: 10.3390/polym14102036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 01/26/2023] Open
Abstract
Metal oxide and graphene derivative-based nanocomposites (NCs) are attractive to the fields of environmental remediation, optics, and cancer therapy owing to their remarkable physicochemical characteristics. There is limited information on the environmental and biomedical applications of tin oxide-reduced graphene oxide nanocomposites (SnO2-rGO NCs). The goal of this work was to explore the photocatalytic activity and anticancer efficacy of SnO2-rGO NCs. Pure SnO2 NPs and SnO2-rGO NCs were prepared using the one-pot hydrothermal method. X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), UV–Vis spectrometry, photoluminescence (PL), and Raman scattering microscopy were applied to characterize the synthesized samples. The crystallite size of the SnO2 NPs slightly increased after rGO doping. TEM and SEM images show that the SnO2 NPs were tightly anchored onto the rGO sheets. The XPS and EDX data confirmed the chemical state and elemental composition of the SnO2-rGO NCs. Optical data suggest that the bandgap energy of the SnO2-rGO NCs was slightly lower than for the pure SnO2 NPs. In comparison to pure SnO2 NPs, the intensity of the PL spectra of the SnO2-rGO NCs was lower, indicating the decrement of the recombination rate of the surfaces charges (e−/h+) after rGO doping. Hence, the degradation efficiency of methylene blue (MB) dye by SnO2-rGO NCs (93%) was almost 2-fold higher than for pure SnO2 NPs (54%). The anticancer efficacy of SnO2-rGO NCs was also almost 1.5-fold higher against human liver cancer (HepG2) and human lung cancer (A549) cells compared to the SnO2 NPs. This study suggests a unique method to improve the photocatalytic activity and anticancer efficacy of SnO2 NPs by fusion with graphene derivatives.
Collapse
|
8
|
Maiti M, Sarkar M, Maiti S, Liu D. Gold decorated shape-tailored zinc oxide-rGO nanohybrids: Candidate for pathogenic microbe destruction and hazardous dye degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Fazli A, Brigante M, Khataee A, Mailhot G. Fe 2.5Co 0.3Zn 0.2O 4/CuCr-LDH as a visible-light-responsive photocatalyst for the degradation of caffeine, bisphenol A, and simazine in pure water and real wastewater under photo-Fenton-like degradation process. CHEMOSPHERE 2022; 291:132920. [PMID: 34798115 DOI: 10.1016/j.chemosphere.2021.132920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/12/2023]
Abstract
This paper outlines the synthesis and application of a sustainable composite for the photo-Fenton-like degradation of caffeine, bisphenol A, and simazine. The phase, morphology, optical and magnetic properties of the samples were evaluated by different characterization techniques. The composite of Fe2.5Co0.3Zn0.2O4 and copper-chromium layered double hydroxide (CuCr-LDH) was determined to be the most favorable photocatalyst in the photo-Fenton-like process when compared with Fe3O4, Fe2.5Co0.3Zn0.2O4, CuCr-LDH, and Fe3O4/CuCr-LDH composite. Studying the efficiency of the photo-Fenton-like degradation process in the presence of the Fe2.5Co0.3Zn0.2O4/CuCr-LDH composite revealed a degradation rate constant of caffeine twice more than the sum of those obtained for the individual processes. This ascribes to the synergistic effect by which the photo-generated electron-hole from the catalyst and the efficient reduction of Fe3+, Cu2+, etc. during the photo-Fenton-like reaction is accelerated. Moreover, under the optimal condition and after 120 min of heterogenous photo-Fenton-like process at natural pH, > 90% of pollutants mixture was decomposed. The experiments fulfilled in near-real conditions demonstrated I) the high stability and magnetically recoverability of the photocatalyst and II) the proper degradation performance of the applied heterogenous photo-Fenton-process in the removal of pollutant mixture in different water bodies and in the presence of chloride and bicarbonate ions.
Collapse
Affiliation(s)
- Arezou Fazli
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Marcello Brigante
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Material Science and Physical Chemistry of Materials, South Ural State University, 454080, Chelyabinsk, Russian Federation
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand, F-63000, Clermont-Ferrand, France
| |
Collapse
|
10
|
Zhou T, Huang X, Zhai T, Ma K, Zhang H, Zhang G. Fabrication of novel three-dimensional Fe 3O 4-based particles electrodes with enhanced electrocatalytic activity for Berberine removal. CHEMOSPHERE 2022; 287:132397. [PMID: 34597640 DOI: 10.1016/j.chemosphere.2021.132397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Reasonable design of three-dimensional (3D) catalytic particle electrodes (CPEs) is crucial for achieving efficient electrocatalytic oxidation of organic pollutants. Herein, the novel Fe3O4/SnO2/GO (FO/SO/GO) particle electrode has been developed and serviced to the 3D electrocatalytic berberine hydrochloride oxidation system with DSA (RuO2-IrO2-SnO2/Ti) electrode as anode and GDE (gas diffusion electrode) electrode as the cathode. Compared with 2D systems and other CPEs, FO/SO/GO electrode shows excellent electrocatalytic activity and remarkable stability for BH removal, that is, the removal rate of BH is 94.8% within 90 min, and the rate constant is 0.03095 min-1. More importantly, after five cycles, the ternary composite still maintains a strong ability to oxidize pollutants. The structural characterization and electrochemical measurement further uncover that the electron transfer ability and electrocatalytic oxidation efficiency are highly dependent on the surface structure regulation of CPEs. Furthermore, the quenching experiments show that hydroxyl radicals are the main active species in the 3D electro-Fenton (EF) system, which can oxidize BH molecules adsorbed on the surface of GO to CO2, H2O, or other products. The results could potentially provide new insights for designing and fabricating more stable and efficient 3D CPEs electrocatalytic removal of organic pollutants in the future.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xingxing Huang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tianjiao Zhai
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Hongwei Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Guozhen Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| |
Collapse
|
11
|
Selvi SV, Rajaji U, Chen SM, Jebaranjitham JN. Floret-like manganese doped tin oxide anchored reduced graphene oxide for electrochemical detection of dimetridazole in milk and egg samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Jamjoum HAA, Umar K, Adnan R, Razali MR, Mohamad Ibrahim MN. Synthesis, Characterization, and Photocatalytic Activities of Graphene Oxide/metal Oxides Nanocomposites: A Review. Front Chem 2021; 9:752276. [PMID: 34621725 PMCID: PMC8490810 DOI: 10.3389/fchem.2021.752276] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022] Open
Abstract
Sustainable water processing techniques have been extensively investigated and are capable of improving water quality. Among the techniques, photocatalytic technology has shown great potential in recent years as a low cost, environmentally friendly and sustainable technology. However, the major challenge in the industrial development of photocatalyst technology is to develop an ideal photocatalyst which must have high photocatalytic activity, a large specific surface area, harvest sunlight and shows recyclability. Keeping these views, the present review highlighted the synthesis approaches of graphene/metal oxide nanocomposite, characterization techniques and their prominent applications in photocatalysis. Various parameters such as photocatalyst loading, structure of photocatalyst, temperature, pH, effect of oxidizing species and wavelength of light were addressed which could affect the rate of degradation. Moreover, the formation of intermediates during photo-oxidation of organic pollutants using these photocatalysts is also discussed. The analysis concluded with a synopsis of the importance of graphene-based materials in pollutant removal. Finally, a brief overview of the problems and future approaches in the field is also presented.
Collapse
Affiliation(s)
- Hayfa Alajilani Abraheem Jamjoum
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
- Department of Chemistry, Faculty of Science, University of Sabratha, Sabratha, Libya
| | - Khalid Umar
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Rohana Adnan
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Mohd. R. Razali
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|
13
|
Gang R, Xu L, Xia Y, Zhang L, Wang S, Li R. Facile One-step Production of 2D/2D ZnO/rGO Nanocomposites under Microwave Irradiation for Photocatalytic Removal of Tetracycline. ACS OMEGA 2021; 6:3831-3839. [PMID: 33585762 PMCID: PMC7876847 DOI: 10.1021/acsomega.0c05559] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic wastewater poses a great threat to the ecological environment and human health. Photocatalytic technology is an effective way to solve environmental pollution problems. In recent years, 2D/2D nanocomposites have received widespread attention because of their larger contact area, which can improve photocatalytic activity. However, the rapid synthesis of 2D/2D nanocomposites at low temperatures is still a challenge. Here, we demonstrated a facile one-step approach to synthesize 2D/2D ZnO nanosheet/rGO nanocomposites through microwave heating in a short time (20 min) for photodegradation of tetracycline (TC). Compared to the pure ZnO nanosheets, the ZnO/rGO-2 nanocomposites exhibited best photocatalytic activity under UV light. The enhanced photocatalytic performance could be attributed to introduction of GO nanosheets, which improves the specific surface area and pore structure and enhances the TC adsorption capacity. In addition, due to the interfacial coupling between ZnO and rGO, the charge was rapidly transferred and the recombination of photogenerated electron-hole pairs on the ZnO surface was inhibited. Our present work provided an efficient and low-temperature strategy for designing 2D/2D ZnO nanosheet/rGO photocatalysts and achieved gram-level production, which opens a new path to fabricate 2D/2D nanocomposites using microwave technology.
Collapse
Affiliation(s)
- Ruiqi Gang
- National
Local Joint Laboratory of Engineering Application of Microwave Energy
and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Lei Xu
- National
Local Joint Laboratory of Engineering Application of Microwave Energy
and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Yi Xia
- Research
Centre for Analysis and Measurement, Kunming
University of Science and Technology, and Analytic & Testing Research
Center of Yunnan, Kunming 650093, Yunnan, China
| | - Libo Zhang
- National
Local Joint Laboratory of Engineering Application of Microwave Energy
and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Shixing Wang
- National
Local Joint Laboratory of Engineering Application of Microwave Energy
and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| | - Rui Li
- National
Local Joint Laboratory of Engineering Application of Microwave Energy
and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, PR China
| |
Collapse
|
14
|
Chand K, Jiao C, Lakhan MN, Shah AH, Kumar V, Fouad DE, Chandio MB, Ali Maitlo A, Ahmed M, Cao D. Green synthesis, characterization and photocatalytic activity of silver nanoparticles synthesized with Nigella Sativa seed extract. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Progress in Graphene/Metal Oxide Composite Photocatalysts for Degradation of Organic Pollutants. Catalysts 2020. [DOI: 10.3390/catal10080921] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The sewage discharge of industrial wastewater seriously pollutes the water source and rivers, which is very harmful to the health of humans and wildlife. Among those methods for treating wastewater, photocatalysis is a sustainable and environmental-friendly technique for removing the organic pollutants with no secondary pollution. As a popular photocatalyst, graphene/metal oxide nanocomposites have been widely reported in the photocatalysis field. In this review, the recent progress of graphene/metal oxide composites including binary and ternary composites is summarized in detail. The synthesis, microstructure design, and application performance of graphene/TiO2, graphene/ZnO, graphene/SnO2, graphene/WO3, graphene/Fe2O3, and graphene/Cu2O composites are introduced firstly. Then, the synthesis, the selection of components, and the performance of various ternary composites are summarized specifically, including graphene/TiO2-, graphene/ZnO-, graphene/SnO2-, graphene/Cu2O-, graphene/FexOy-, and graphene/Bi-containing ternary composites. At last, the possible research directions of graphene/metal oxide nanocomposites are put forward. The main purpose is to provide a theoretical guidance for designing high-performance graphene/metal oxide photocatalysts for wastewater treatment.
Collapse
|