1
|
Yang C, Yang J, Zhu J, Liu R, Duan X, Liu L, Ding C, Liu W, Li J, Ren S, Yao L, Liu Q. Tailoring local electron density and molecular oxygen activation behavior via potassium/halogen co-tuned graphitic carbon nitride for enhanced photocatalytic activity. J Colloid Interface Sci 2024; 676:89-100. [PMID: 39018814 DOI: 10.1016/j.jcis.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/30/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Graphite carbon nitride (g-C3N4) is a promising photocatalyst,but its inadequate reactive sites, weak visible light responsiveness, and sluggish separation of photogenerated carriers hamperthe improvement of photodegradation efficiency. In this work, potassium (K) and halogen atoms co-modified g-C3N4 photocatalysts (CN-KX, X = F, Cl, Br, I) were constructed to adjust the electrical and band structure for enhanced generation of reactive oxygen species. Through an integration of theoretical calculation and experimental exploration, the doping sites of halogen atoms as well as the evolution of crystal, band, and electronic structures were investigated. The results show that a covalent bond is formed between the F atom and the C atom, substitution of the N atom occurs with a Cl atom, and doping of Br, I, or K atoms takes place at the interstitial site. CN-KX photocatalysts exhibits lower band gap, faster photogenerated electron migration, and enhanced photocatalytic activity. Specifically, the CN-KI photocatalyst exhibits the highest photodegradation efficiency because of its smaller interplanar spacing, formation of the midgap state, and adjustable local electron density. Equally, the doping of I atom not only provides a stable adsorption site for oxygen (O2) but also facilitates electron transfer, promoting the production of superoxide radicals (O2-) and contributing to the process of photodegradation.
Collapse
Affiliation(s)
- Chen Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jian Yang
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| | - Jiaqing Zhu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Runxue Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Xu Duan
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Lang Liu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi 530006, China; Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutrality, Nanning, Guangxi 530006, China.
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Weizao Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Jiangling Li
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| | - Shan Ren
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lu Yao
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Qingcai Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Kotbi A, El Radaf IM, Alaoui IH, Cantaluppi A, Zeinert A, Lahmar A. Structural and Optical Characterization of Porous NiV 2O 6 Films Synthesized by Nebulizer Spray Pyrolysis for Photodetector Applications. MICROMACHINES 2024; 15:839. [PMID: 39064350 PMCID: PMC11279273 DOI: 10.3390/mi15070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
NiV2O6 thin films were grown on glass slides with varying thicknesses using nebulizer spray pyrolysis. The impact of thickness on the thin films' optical, structural, morphological, and electrical characteristics was systematically investigated. X-ray diffraction and micro-Raman analysis confirmed the formation of the triclinic NiV2O6 system. Surface morphology and roughness variations in the as-deposited NiV2O6 films were studied using scanning electron microscopy (SEM) and a profilometer. Optical properties, including optical band gap (Eg), extinction coefficient (k), absorption coefficient (α), and refractive index (n), were determined through optical reflectance and transmittance measurements. The optical energy gap of the as-deposited NiV2O6 films decreased from 2.02 eV to 1.58 eV with increased layer thickness. Furthermore, the photo-detectivity of the films demonstrated an enhancement corresponding to the prolonged spray time. The sensitivity values obtained for visible irradiation were 328, 511, and 433 for samples S1, S2, and S3, respectively. The obtained results can be imputed to the specific porous microstructure.
Collapse
Affiliation(s)
- Ahmed Kotbi
- Laboratory of Condensed Matter Physics, University of Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France; (A.K.); (I.H.A.); (A.C.); (A.Z.)
| | - Islam M. El Radaf
- Electron Microscope and Thin Films Department, Physics Research Institute, National Research Centre, 33 El Bohoos Str., Dokki, Giza 12622, Egypt;
- Department of Physics, College of Science, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ilham Hamdi Alaoui
- Laboratory of Condensed Matter Physics, University of Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France; (A.K.); (I.H.A.); (A.C.); (A.Z.)
| | - Anna Cantaluppi
- Laboratory of Condensed Matter Physics, University of Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France; (A.K.); (I.H.A.); (A.C.); (A.Z.)
| | - Andreas Zeinert
- Laboratory of Condensed Matter Physics, University of Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France; (A.K.); (I.H.A.); (A.C.); (A.Z.)
| | - Abdelilah Lahmar
- Laboratory of Condensed Matter Physics, University of Picardie Jules Verne, 33 Rue Saint Leu, 80039 Amiens, France; (A.K.); (I.H.A.); (A.C.); (A.Z.)
| |
Collapse
|
3
|
Cui Y, Li Q, Yang D, Yang Y. Colorimetric-SERS dual-mode sensing of Pb(II) ions in traditional Chinese medicine samples based on carbon dots-capped gold nanoparticles as nanozyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124100. [PMID: 38484642 DOI: 10.1016/j.saa.2024.124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Peroxidase (POD)-mimicking nanozymes have got great progress in the sensing field, but most nanozyme assaying systems are built with a single-signal output mode, which is vulnerable to the effect of different factors. Thus, establishment of a dual-signal output mode is necessary for acquiring dependable and durable performance. This work described an Fe doped noradrenaline-based carbon dots and Prussian blue (Fe,NA-CDs/PB) nanocomposite as a POD-like nanozyme and modified gold nanoparticles (AuNPs) for the colorimetric and surface-enhanced Raman scattering (SERS) dual-mode sensor of Pb(II) in traditional Chinese medicine samples. With 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and 3,3',5,5'-tetramethylbenzidine (TMB) as the substrates, it was found that the addition of Pb(II) inhibited the POD-like activity of Fe,NA-CDs/PB and AuNPs, so it was used for colorimetric and SERS dual-mode assays. The POD-like activity was shown to be a "ping-pong" catalytic mechanism, whereas the addition of Pb(II) produced noncompetitive inhibition with modulatory effects on Fe,NA-CDs/PB. The linear response range for colorimetric and SERS sensor detection of Pb(II) was 0.01-1.00 mg/L with the detection limit of 5 μg/L and 8 μg/L, respectively. This dual-mode detection system shows excellent selectivity. More importantly, the Pb(II) in traditional Chinese medicine samples have successfully assayed with good recovery from 90.4 to 108.9 %.
Collapse
Affiliation(s)
- Yifan Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Qiulan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Dezhi Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China
| | - Yaling Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Yunnan Province 650500, China.
| |
Collapse
|
4
|
Hou S, Gao X, Lv X, Zhao Y, Yin X, Liu Y, Fang J, Yu X, Ma X, Ma T, Su D. Decade Milestone Advancement of Defect-Engineered g-C 3N 4 for Solar Catalytic Applications. NANO-MICRO LETTERS 2024; 16:70. [PMID: 38175329 PMCID: PMC10766942 DOI: 10.1007/s40820-023-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Over the past decade, graphitic carbon nitride (g-C3N4) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C3N4 is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the "all-in-one" defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultra-active coordinated environment (M-Nx, M-C2N2, M-O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra (fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C3N4 "customization", motivating more profound thinking and flourishing research outputs on g-C3N4-based photocatalysis.
Collapse
Affiliation(s)
- Shaoqi Hou
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Xiaochun Gao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Xingyue Lv
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Yilin Zhao
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Xitao Yin
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Ying Liu
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China
| | - Juan Fang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xingxing Yu
- Department of Chemistry, The University of Tokyo, 7-3-1 Hogo, Bunkyo, Tokyo, Japan
| | - Xiaoguang Ma
- Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, 186 Middle Hongqi Road, Yantai, 264025, People's Republic of China.
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Dawei Su
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia.
| |
Collapse
|
5
|
Zhu Z, Shen W, Li D, Ye J, Song X, Tang X, Zhao J, Huo P. Oxygen-Doped Red Carbon Nitride: Enhanced Charge Separation and Light Absorption for Robust CO 2 Photoreduction. Inorg Chem 2023; 62:15432-15439. [PMID: 37682796 DOI: 10.1021/acs.inorgchem.3c01633] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Utilizing artificial photosynthesis for the conversion of CO2 into value-added fuels has been recognized as a promising strategy for the ever-increasing energy crisis and the greenhouse effect. Herein, the element doping engineering of red spherical g-C3N4 having oxygen bonded with compositional carbon (C-O-C) for CO2 photoreduction has been explored to address this challenge. The C-O bond was formed by hydrothermal treatment with dicyandiamide and 1,3,5-trichlorotriazine. The experimental and DFT results displayed the optimum oxygen substitution sites and demonstrated that the oxygen doping greatly improved the light utilization efficiency, CO2 affinity, and charge carrier transfer, which enhanced photoreduction efficiency of CO2. The evolution rates of CO (47.2 μmol g-1) and CH4 (9.1 μmol g-1) using O-CN were much higher than that of bulk-CN without a cocatalyst. The main reason was the contribution of the O 2p orbital to the conduction band (CB) and valence band of O-CN, which effectively reduced the electron mass, facilitating electron/hole separation and enhancing its fluidity. Furthermore, the Fermi level also shifted to the bottom of the CB, leading to higher electron density, which further improved the CO2 reduction ability. Our study marks an important step for developing high-performance photocatalysts for reduction of CO2.
Collapse
Affiliation(s)
- Zhi Zhu
- Institute of the Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212000, P.R. China
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Wenjing Shen
- Institute of the Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212000, P.R. China
| | - Dongyi Li
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Jian Ye
- Institute of the Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212000, P.R. China
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Xianghai Song
- Institute of the Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212000, P.R. China
| | - Xu Tang
- Institute of the Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212000, P.R. China
| | - Jun Zhao
- Institute of Bioresource and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong 999077, China
| | - Pengwei Huo
- Institute of the Green Chemistry and Chemical Technology, Institute for Advanced Materials, Jiangsu University, Zhenjiang 212000, P.R. China
| |
Collapse
|
6
|
Du Z, Cai H, Zhao Z, Guo Z, Lin J, Huang Y, Tang C, Chen G, Fang Y. Facile synthesis of graphene quantum dots and C-doping porous BN nanoribbon heterojunctions for boosting CO2 photoreduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Fang Z, Yue X, Li F, Xiang Q. Functionalized MOF-Based Photocatalysts for CO 2 Reduction. Chemistry 2023; 29:e202203706. [PMID: 36606747 DOI: 10.1002/chem.202203706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Metal-organic frameworks (MOFs) materials have become a research forefront in the field of photocatalytic CO2 reduction attributed to their ultra-high specific surface area, adjustable structure, and abundant catalytic active sites. Particularly, MOFs can be facilely tuned to match CO2 photoreduction by utilizing post-modification of metal nodes, functionalization of organic linkers, and combination with other active materials. Herein, the recent advances in the construction strategy of MOF-based photocatalysts materials for CO2 reduction are highlighted. Some systematic modification strategies on MOF-based photocatalysts are also discussed, such as modification of metal sites and organic ligands, construction of heterojunction, introduction of single/dual-atom, and strain engineering. Finally, the future development directions of MOF-based photocatalysts in the field of CO2 reduction are presented.
Collapse
Affiliation(s)
- Zhaohui Fang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Xiaoyang Yue
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Fang Li
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Quanjun Xiang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| |
Collapse
|
8
|
Khedr TM, El-Sheikh SM, Endo-Kimura M, Wang K, Ohtani B, Kowalska E. Development of Sulfur-Doped Graphitic Carbon Nitride for Hydrogen Evolution under Visible-Light Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:62. [PMID: 36615972 PMCID: PMC9824438 DOI: 10.3390/nano13010062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Developing eco-friendly strategies to produce green fuel has attracted continuous and extensive attention. In this study, a novel gas-templating method was developed to prepare 2D porous S-doped g-C3N4 photocatalyst through simultaneous pyrolysis of urea (main g-C3N4 precursor) and ammonium sulfate (sulfur source and structure promoter). Different content of ammonium sulfate was examined to find the optimal synthesis conditions and to investigate the property-governed activity. The physicochemical properties of the obtained photocatalysts were analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), scanning transmission electron microscopy (STEM), specific surface area (BET) measurement, ultraviolet-visible light diffuse reflectance spectroscopy (UV/vis DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and reversed double-beam photo-acoustic spectroscopy (RDB-PAS). The as-prepared S-doped g-C3N4 photocatalysts were applied for photocatalytic H2 evolution under vis irradiation. The condition-dependent activity was probed to achieve the best photocatalytic performance. It was demonstrated that ammonium sulfate played a crucial role to achieve concurrently 2D morphology, controlled nanostructure, and S-doping of g-C3N4 in a one-pot process. The 2D nanoporous S-doped g-C3N4 of crumpled lamellar-like structure with large specific surface area (73.8 m2 g-1) and improved electron-hole separation showed a remarkable H2 generation rate, which was almost one order in magnitude higher than that of pristine g-C3N4. It has been found that though all properties are crucial for the overall photocatalytic performance, efficient doping is probably a key factor for high photocatalytic activity. Moreover, the photocatalysts exhibit significant stability during recycling. Accordingly, a significant potential of S-doped g-C3N4 has been revealed for practical use under natural solar radiation.
Collapse
Affiliation(s)
- Tamer M. Khedr
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt
| | - Said M. El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Kunlei Wang
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Bunsho Ohtani
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Nautiyal R, Tavar D, Suryavanshi U, Singh G, Singh A, Vinu A, Mane GP. Advanced nanomaterials for highly efficient CO 2 photoreduction and photocatalytic hydrogen evolution. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:866-894. [PMID: 36506822 PMCID: PMC9733696 DOI: 10.1080/14686996.2022.2149036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
At present, CO2 photoreduction to value-added chemicals/fuels and photocatalytic hydrogen generation by water splitting are the most promising reactions to fix two main issues simultaneously, rising CO2 levels and never-lasting energy demand. CO2, a major contributor to greenhouse gases (GHGs) with about 65% of the total emission, is known to cause adverse effects like global temperature change, ocean acidification, greenhouse effects, etc. The idea of CO2 capture and its conversion to hydrocarbons can control the further rise of CO2 levels and help in producing alternative fuels that have several further applications. On the other hand, hydrogen being a zero-emission fuel is considered as a clean and sustainable form of energy that holds great promise for various industrial applications. The current review focuses on the discussion of the recent progress made in designing efficient photocatalytic materials for CO2 photoreduction and hydrogen evolution reaction (HER). The scope of the current study is limited to the TiO2 and non-TiO2 based advanced nanomaterials (i.e. metal chalcogenides, MOFs, carbon nitrides, single-atom catalysts, and low-dimensional nanomaterials). In detail, the influence of important factors that affect the performance of these photocatalysts towards CO2 photoreduction and HER is reviewed. Special attention is also given in this review to provide a brief account of CO2 adsorption modes on the catalyst surface and its subsequent reduction pathways/product selectivity. Finally, the review is concluded with additional outlooks regarding upcoming research on promising nanomaterials and reactor design strategies for increasing the efficiency of the photoreactions.
Collapse
Affiliation(s)
- Rashmi Nautiyal
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be) University, Mumbai, India
| | - Deepika Tavar
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Center for Advanced Radiation Shielding and Geopolymeric Material, CSIR– Advanced Material and Processes Research Institute, Bhopal, India
| | - Ulka Suryavanshi
- Rayat Shikshan Sanstha’s, Karmveer Bhaurao Patil College, Vashi, Navi Mumbai, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Archana Singh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Center for Advanced Radiation Shielding and Geopolymeric Material, CSIR– Advanced Material and Processes Research Institute, Bhopal, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science, and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Gurudas P. Mane
- Department of Chemistry, Sunandan Divatia School of Science, SVKM’s NMIMS (Deemed-to-be) University, Mumbai, India
| |
Collapse
|
10
|
Khan J, Sun Y, Han L. A Comprehensive Review on Graphitic Carbon Nitride for Carbon Dioxide Photoreduction. SMALL METHODS 2022; 6:e2201013. [PMID: 36336653 DOI: 10.1002/smtd.202201013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Inspired by natural photosynthesis, harnessing the wide range of natural solar energy and utilizing appropriate semiconductor-based catalysts to convert carbon dioxide into beneficial energy species, for example, CO, CH4 , HCOOH, and CH3 COH have been shown to be a sustainable and more environmentally friendly approach. Graphitic carbon nitride (g-C3 N4 ) has been regarded as a highly effective photocatalyst for the CO2 reduction reaction, owing to its cost-effectiveness, high thermal and chemical stability, visible light absorption capability, and low toxicity. However, weaker electrical conductivity, fast recombination rate, smaller visible light absorption window, and reduced surface area make this catalytic material unsuitable for commercial photocatalytic applications. Therefore, certain procedures, including elemental doping, structural modulation, functional group adjustment of g-C3 N4 , the addition of metal complex motif, and others, may be used to improve its photocatalytic activity towards effective CO2 reduction. This review has investigated the scientific community's perspectives on synthetic pathways and material optimization approaches used to increase the selectivity and efficiency of the g-C3 N4 -based hybrid structures, as well as their benefits and drawbacks on photocatalytic CO2 reduction. Finally, the review concludes a comparative discussion and presents a promising picture of the future scope of the improvements.
Collapse
Affiliation(s)
- Javid Khan
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| | - Yanyan Sun
- School of Materials Science and Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Lei Han
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Adv. Mater. and Technology for Clean Energy, Hunan University, Changsha, 410082, China
| |
Collapse
|
11
|
Zhang X, Ma H, Zhang M, Ma Y. Interfacial Charge-Transfer Excitons Help the Photoreduction of CO 2 on TiO 2. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Huizhong Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yuchen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
12
|
Fao GD, Jiang JC. Theoretical investigation of CO2 conversion on corrugated g-C3N4 Surface decorated by single-atom of Fe, Co, and Pd. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Biochar modified Co–Al LDH for enhancing photocatalytic reduction CO2 performance and mechanism insight. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
A DFT study of carbon dioxide reduction catalyzed by group 3 metal complexes of silylamides. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Light assisted nickel(II) grafted-g-carbon nitride molecular hybrid promoted hydrocarboxylation of olefins with CO2 at atmospheric pressure condition. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Arumugam M, Tahir M, Praserthdam P. Effect of nonmetals (B, O, P, and S) doped with porous g-C 3N 4 for improved electron transfer towards photocatalytic CO 2 reduction with water into CH 4. CHEMOSPHERE 2022; 286:131765. [PMID: 34371351 DOI: 10.1016/j.chemosphere.2021.131765] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/16/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic conversion of carbon dioxide (CO2) into gaseous hydrocarbon fuels is an auspicious way to produce renewable fuels in addition to greenhouse gas emission mitigation. In this work, non-metals (B, O, P, and S) doped graphitic carbon nitride (g-C3N4) was prepared via solid-state polycondensation of urea for photocatalytic CO2 reduction into highly needed methane (CH4) with water under UV light irradiation. The various physicochemical characterization results reveal the successful incorporation of B, O, P, and S elements in the g-C3N4 matrix. The maximum CH4 yield of 55.10 nmol/(mLH2O.gcat) over S-doped g-C3N4 has been obtained for CO2 reduction after 7 h of irradiation. This amount of CH4 production was 1.9, 1.4, 1.7, and 2.4-folds higher than B, O, P and bare g-C3N4 samples. The doping of S did not enlarge the surface area and photon absorption ability of the g-C3N4 sample, but this significant improvement was evidently due to effective charge separation and migration. The observed results imply that the doping of non-metal elements provides improved charge separation and is an effective way to boost photocatalyst performance. This work offers an auspicious approach to design non-metal doped g-C3N4 photocatalysts for renewable fuel production and would be promising for other energy application.
Collapse
Affiliation(s)
- Malathi Arumugam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Muhammad Tahir
- Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
17
|
Oseghe EO, Akpotu SO, Mombeshora ET, Oladipo AO, Ombaka LM, Maria BB, Idris AO, Mamba G, Ndlwana L, Ayanda OS, Ofomaja AE, Nyamori VO, Feleni U, Nkambule TT, Msagati TA, Mamba BB, Bahnemann DW. Multi-dimensional applications of graphitic carbon nitride nanomaterials – A review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Facile hydrothermal preparation of a ZnFe2O4/TiO2 heterojunction for NOx removal. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Que M, Cai W, Chen J, Zhu L, Yang Y. Recent advances in g-C 3N 4 composites within four types of heterojunctions for photocatalytic CO 2 reduction. NANOSCALE 2021; 13:6692-6712. [PMID: 33885474 DOI: 10.1039/d0nr09177d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Studies of photocatalytic conversion of CO2 into hydrocarbon fuels, as a promising solution to alleviate global warming and energy issues, are booming in recent years. Researchers have focused their interest in developing g-C3N4 composite photocatalysts with intriguing features of robust light harvesting ability, excellent catalysis, and stable performance. Four types of heterojunctions (type-II, Z-scheme, S-scheme and Schottky) of the g-C3N4 composites are widely adopted. This review aims at presenting and comparing the photocatalytic mechanisms, characteristics, and performances of g-C3N4 composites concerning these four types of heterojunctions. Besides, perspectives and undergoing efforts for further development of g-C3N4 composite photocatalysts are discussed. This review would be helpful for researchers to gain a comprehensive understanding of the progress and future development trends of g-C3N4 composite heterojunctions for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Meidan Que
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.
| | | | | | | | | |
Collapse
|
20
|
Yang X, Tang B, Cao X, Ding Y, Huang M. Light-storing assisted photocatalytic composite g-C3N4/Sr2MgSi2O7:(Eu,Dy) with sustained activity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Fabrication of Bi-BiOCl/MgIn2S4 heterostructure with step-scheme mechanism for carbon dioxide photoreduction into methane. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101453] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Kumar A, Raizada P, Kumar Thakur V, Saini V, Aslam Parwaz Khan A, Singh N, Singh P. An overview on polymeric carbon nitride assisted photocatalytic CO2 reduction: Strategically manoeuvring solar to fuel conversion efficiency. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116219] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Zhu Z, Liu Z, Tang X, Reeti K, Huo P, Wong JWC, Zhao J. Sulfur-doped g-C 3N 4 for efficient photocatalytic CO 2 reduction: insights by experiment and first-principles calculations. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02382e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Band alignments of bulk-CN and S-CN and the photocatalytic reduction of CO2 for the production of CO.
Collapse
Affiliation(s)
- Zhi Zhu
- Institute of Bioresource and Agriculture
- Department of Biology
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Zhixiang Liu
- School of Mechanical and Transportation Engineering
- Guangxi University of Science and Technology
- Liuzhou 45616
- P. R. China
| | - Xu Tang
- Institute of the Green Chemistry and Chemical Technology
- Institute for Advanced Materials
- Jiangsu University
- Zhen Jiang 212000
- P.R. China
| | - Kumar Reeti
- Institute of Bioresource and Agriculture
- Department of Biology
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Pengwei Huo
- Institute of the Green Chemistry and Chemical Technology
- Institute for Advanced Materials
- Jiangsu University
- Zhen Jiang 212000
- P.R. China
| | - Jonathan Woon-Chung Wong
- Institute of Bioresource and Agriculture
- Department of Biology
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Jun Zhao
- Institute of Bioresource and Agriculture
- Department of Biology
- Hong Kong Baptist University
- Kowloon Tong
- China
| |
Collapse
|
24
|
Huang X, Gu W, Ma Y, Liu D, Ding N, Zhou L, Lei J, Wang L, Zhang J. Recent advances of doped graphite carbon nitride for photocatalytic reduction of CO2: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04278-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Preparation of a g-C 3N 4/UiO-66-NH 2/CdS Photocatalyst with Enhanced Visible Light Photocatalytic Activity for Tetracycline Degradation. NANOMATERIALS 2020; 10:nano10091824. [PMID: 32932729 PMCID: PMC7558207 DOI: 10.3390/nano10091824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022]
Abstract
A combination of calcination and hydrothermal processing was used to prepare a g-C3N4/UiO-66-NH2/CdS photocatalyst, and the degradation of tetracycline (TC) over this material was assessed. The photocatalytic performance of this nanocomposite was approximately 4.4 and 2.3 times those of CdS and g-C3N4, respectively, and was found to be affected by the CdS loading amount, the pH of the reaction solution and the initial TC concentration. This catalyst also exhibited stable performance over four consecutive reaction cycles. The highly enhanced photoactivity of the g-C3N4/UiO-66-NH2/CdS is attributed to the introduction of CdS, which widens the range over which the material absorbs visible light and inhibits the recombination of electron–hole pairs. The results of this study suggest further applications for this material in the treatment of contaminated wastewater powered by solar energy.
Collapse
|
26
|
Roy S. Tale of Two Layered Semiconductor Catalysts toward Artificial Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37811-37833. [PMID: 32805975 DOI: 10.1021/acsami.0c11245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The ever-increasing reliance on nonrenewable fossil fuels due to massive urbanization and industrialization created problems such as depletion of the primary feedstock and raised the atmospheric CO2 levels causing global warming. A smart and promising approach is artificial photosynthesis that photocatalytically valorizes CO2 into high-value chemicals. The inexpensive layered semiconductors like g-C3N4 and rGO or GO have the potential to make the process practically feasible for real applications. The suitable band positions with respect to the reduction potentials coupled with the typical surface properties of these layered semiconductors play a beneficial role in photoreduction of CO2. Additionally, the creation of heterojunction interfaces to achieve the Z-scheme by anchoring g-C3N4 and rGO with another semiconductor with proper band alignment and dispersing plasmonic nano metals to obtain Schottky barriers on the layered surfaces also help retarding the electron-hole recombination and boost up the catalytic efficacy. Extensive exploration happened in recent years toward artificial photosynthesis over these materials, which needs a critical compendium. Surprisingly, in spite of the recent explosion of studies on photocatalytic reduction of CO2 over metal-free semiconductors, there is not a single review on comparing the mechanistic aspects of photoreduction of CO2 over the layered semiconductors g-C3N4 and rGO. This review stands out as a unique documentation, where the mechanism of photocatalytic reduction of CO2 over this set of materials is critically examined in the context of band and surface modifications. An overall conclusion and outlook at the end indicates the need to develop prototypes for artificial photosynthesis with these well-studied semiconducting layered materials to yield solar fuels.
Collapse
Affiliation(s)
- Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
27
|
Liu R, Chen Z, Yao Y, Li Y, Cheema WA, Wang D, Zhu S. Recent advancements in g-C3N4-based photocatalysts for photocatalytic CO2 reduction: a mini review. RSC Adv 2020; 10:29408-29418. [PMID: 35521120 PMCID: PMC9055987 DOI: 10.1039/d0ra05779g] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/27/2020] [Indexed: 01/01/2023] Open
Abstract
g-C3N4-based photocatalysts for photocatalytic CO2 reduction.
Collapse
Affiliation(s)
- Runlu Liu
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Zhixin Chen
- School of Mechanical, Materials, Mechatronics and Biomedical Engineering
- University of Wollongong
- Wollongong
- Australia
| | - Yao Yao
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Waqas A. Cheema
- Industrial Technology Development Center (ITDC)
- Higher Education Intelligence (HEI) Project
- Pakistan
| | - Dawei Wang
- School of Chemical Engineering
- UNSW Australia
- Sydney
- Australia
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|