1
|
Shah AH, Rather MA. Ultrasonically assisted hydrothermal synthesis of tungsten(VI) oxide-TiO 2 nanocomposites for enhanced photocatalytic degradation of non-narcotic drug paracetamol under natural solar light: insights into degradation pathway, mechanism, and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93916-93933. [PMID: 37518843 DOI: 10.1007/s11356-023-28928-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Photocatalytic degradation of pharmaceutical residues through natural solar radiation represents a green and economical treatment process. In this work, ultrasonically assisted hydrothermal synthesis of WO3-TiO2 nanocomposite was carried out at 140-150 °C for 5 h and calcinated at 600 °C. The structural and optical properties of the synthesized material were investigated using techniques like XRD, FESEM/EDX, HRTEM, BET surface area, UV-DRS optical analysis, and photocurrent response. The band gap of TiO2 was successfully reduced from 3.0 to 2.54 eV and thus making it effective under solar light. Complete degradation of paracetamol (50 ppm and natural pH of 6.5) was achieved in 3.5 h under natural sunlight at catalyst dose of 0.5 g/l. The extent of mineralization was evaluated by measuring the COD reduction. Based on the degradation products identified by GC-MS/LC-TOF-MS, the degradation process under natural solar-light could be interpreted to initiate through OH. radical species. The toxicity removal of the treated paracetamol solution under natural solar-light was evaluated by the seed germination test using Spinacia oleracea seeds and exhibited 66.70% seed germination, confirming the reduction in toxicity. The enhanced photocatalytic efficiency of the nanocomposite is attributed to the higher surface area, low rutile content, lower band gap, and incorporation of WO3, which led to an extended absorption range and a slower rate of electron-hole recombination. The technical insights presented in this research offer a feasible approach for utilizing natural solar light driven photocatalysis for wastewater treatment in an efficient and sustainable way. The proposed degradation pathway, and seed germination test (toxicity removal) of the treated paracetamol solution under natural sunlight, has not been previously evaluated.
Collapse
Affiliation(s)
- Aarif Hussain Shah
- Department of Biochemistry, SP College, Cluster University Srinagar, Srinagar, J&K, India.
- Department of Chemical Engineering, National Institute of Technology, Srinagar, J&K, India.
| | - Mushtaq Ahmad Rather
- Department of Chemical Engineering, National Institute of Technology, Srinagar, J&K, India
| |
Collapse
|
2
|
Mirsalari SA, Nezamzadeh-Ejhieh A, Massah AR. A Z-scheme CdS/Ag 3PO 4 catalyst: Characterization, experimental design and mechanism consideration for methylene blue. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122139. [PMID: 36446172 DOI: 10.1016/j.saa.2022.122139] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the explosive use of Azo dyes in various industries such as textiles, discharging these industrial effluents into the environment critically polluted water supplies. Accordingly, constructing/developing novel binary catalysts to diminish the pollution extent of such effluents before discharging into environment is an excellent issue in environmental chemistry. Here, a binary CdS/ Ag3PO4 was constructed, and its boosted photocatalytic activity was proven against methylene blue (MB), as a model dye pollutant. The Wurtzite CdS and Ag3PO4 cubic crystal nanoparticles were synthesized and coupled mechanically. The binary sample's lowest photoluminescence (PL) results confirm a higher e/h separation. DRS results confirmed a decreased energy gap for the coupled system. The semiconductors' VB and CV potentials were calculated and used for constructing of Z-scheme mechanism. The photocatalytic activity was followed via an experimental design approach. The model F-value of 89.75 > F0.05,14,13 = 2.42 and LOF F-value of 6.57 < F0.05,10, 3 = 8.79 reveal that the model well processed data. The optimal run conditions were CMB: 5 ppm, Catalyst dose: 1 g/L, pH: 3.25, and irradiation time: 139 min, at which 85% of MB molecules were degraded. Based on the trend of ascorbic acid > isopropanol > formic acid ≈ nitrate obtained for the scavengers' importance in decreasing the photocatalyst activity, superoxide radicals had the highest effect in MB degradation and then •OH. The results showed the direct Z-scheme has the main effect on MB degradation by the binary sample.
Collapse
Affiliation(s)
- Seyyedeh Atefeh Mirsalari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| | - Ahmad Reza Massah
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
3
|
Zhang J, Wang C, Shi X, Feng Q, Shen T, Wang S. Modulation of the Structure of the Conjugated Polymer TMP and the Effect of Its Structure on the Catalytic Performance of TMP-TiO 2 under Visible Light: Catalyst Preparation, Performance and Mechanism. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1563. [PMID: 36837193 PMCID: PMC9965725 DOI: 10.3390/ma16041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
The photocatalytic activity of titanium dioxide (TiO2) is largely hindered by its low photoresponse and quantum efficiency. TiO2 modified by conjugated polymers (CPs) is considered a promising approach to enhance the visible light responsiveness of TiO2. In this work, in order to investigate the effect of CP structural changes on the photocatalytic performance of TiO2 under visible light, trimesoyl chloride-melamine polymers (TMPs) with different structural characteristics were created by varying the parameters of the polymerisation process of tricarbonyl chloride (TMC) and melamine (M). The TMPs were subsequently composited with TiO2 to form complex materials (TMP-TiO2) using an in situ hydrothermal technique. The photocatalytic activity of TMP-TiO2 was evaluated by the degradation of rhodamine B (RhB). The results showed that the trend of the structure of the TMP with the reaction conditions was consistent with the visible light responsiveness of TMP-TiO2, and TMP (1:1)-TiO2 had the best photocatalytic activity and could degrade 96.1% of the RhB. In conclusion, our study provided new insights into the influence of the structural changes of TMPs on the photocatalytic activity of TMP-TiO2 under visible light, and it improves our understanding of how conjugated polymers affect the photocatalytic activity of TiO2 under visible light.
Collapse
Affiliation(s)
- Jing Zhang
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chen Wang
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaoguo Shi
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qing Feng
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tingting Shen
- Division of Environmental Science & Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Siyuan Wang
- Division of Light Industry, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
4
|
Warshagha MZA, Muneer M, Althagafi II, Ahmed SA. Highly efficient and stable AgI-CdO nanocomposites for photocatalytic and antibacterial activity. RSC Adv 2023; 13:5013-5026. [PMID: 36777948 PMCID: PMC9909248 DOI: 10.1039/d2ra07626h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
For the last several decades, semiconducting materials and nanocomposites have received a lot of interest in generating highly efficient photocatalysts to destroy organic pollutants and eradicate bacteria. This study uses a simple deposition and precipitation approach at ambient temperature to create a unique and efficient AgI-CdO heterojunction. DRS, IR, SEM, EDS, XRD, EIS, and TEM were utilized to identify the material. SEM and TEM investigation depict the completely spherical, hexagonal forms and zigzag cubes for synthesized AgI-CdO. The EDX spectra reveal the presence of Ag, I, Cd, and O elements without impurity peaks showing that the prepared samples are highly pure. The activity of the synthesized materials was tested by degrading two different chromophoric dyes and a drug derivative (paracetamol) in an aqueous suspension under visible light. In addition, the activity of the most active catalyst was compared with Degussa P25, Fenton's reagent, and under sunlight for degradation of MB and RhB under similar conditions. Photolysis of paracetamol was also looked at using HPLC to identify intermediates formed in the photo-oxidation process. In addition, antibacterial activity was also investigated with the synthesized CdO-AgI nanocomposite in vitro against human pathogenic bacterial strains and compared with that of pure materials like AgI and standard ampicillin. The results showed excellent activity with the composite material, which could be due to the higher surface areas and the interactions between AgI and CdO nanoparticles. Quenching investigations revealed O2˙- and holes are principal reactive species. A viable photocatalytic degradation mechanism for organic pollutant elimination over the AgI-CdO nanocomposite has been sketched out based on the obtained results.
Collapse
Affiliation(s)
| | - M. Muneer
- Department of Chemistry, Aligarh Muslim UniversityAligarh-202002India
| | - Ismail I. Althagafi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| | - Saleh A. Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura UniversityMakkah 21955Saudi Arabia
| |
Collapse
|
5
|
Photocatalytic activity of ZnO-PbS nanoscale toward Allura Red AC in an aqueous solution: Characterization and mechanism study. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Mokhtari S, Faghihian H, Mirmohammadi M. A core/shell TiO 2 magnetized molecularly imprinted photocatalyst (MMIP@TiO 2): synthesis and its photodegradation activity towards sulfasalazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:13624-13638. [PMID: 36138289 DOI: 10.1007/s11356-022-22792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Although the selectivity of TiO2 for the degradation of target molecules is not enough, it is a broadly employed photocatalyst for the degradation of many pollutants. Molecularly imprinted compounds owing to their extreme recognition specificity have become increasingly popular for preparing selective photocatalysts. In this work, based on molecularly imprinted magnetized TiO2 (MMIP@TiO2), a selective photocatalyst was prepared. Via the co-precipitation method, Fe3O4 particles were prepared and coated respectively by SiO2, vinyl end groups, and molecularly imprinted polymers (MIP). The synthesized photocatalyst was characterized by the X-ray diffraction method (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectrometry (EDX), vibrating sample magnetometry (VSM), high-performance liquid chromatography (HPLC), and photoluminescence analysis (PL). The photocatalyst was then used to degrade the sulfasalazine pharmaceutical pollutant under UV irradiation. An average crystallite size of 9 nm was obtained for the MMIP@TiO2 sample from the Scherrer formula and 34.5 nm by the Williamson-Hall formula. The results revealed that compared to the non-imprinted counterpart, the molecularly imprinted photocatalyst had significantly higher efficiency and selectivity for the degradation of target molecules. The process was forwarded with 90% efficiency within 10 min. Optimal conditions were 10.0 min irradiation when 25 mL SSZ solution (50 mg/L), 0.07 g/L catalyst dose, and pH 6.0 were applied. The maximum removal efficiency was calculated to be 92%. The external magnetic field quickly removed the photocatalyst from the solution and regenerated it. It was revealed that after each regeneration cycle, the efficiency dropped. Nevertheless, 63% of the preliminary effectiveness remained after four regeneration steps.
Collapse
Affiliation(s)
- Sheida Mokhtari
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Hossein Faghihian
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| | - Mehrosadat Mirmohammadi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| |
Collapse
|
7
|
Salesi S, Nezamzadeh-Ejhieh A. Boosted photocatalytic effect of binary AgI/Ag 2WO 4 nanocatalyst: characterization and kinetics study towards ceftriaxone photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90191-90206. [PMID: 35864406 DOI: 10.1007/s11356-022-22100-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
In modern chemistry, great interest has been paid to introducing outstanding photocatalysts for degrading organic pollutants. Herein, a highly efficient binary AgI/Ag2WO4 photocatalyst was prepared from AgI and Ag2WO4 nanoparticles (NPs) and characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), electrochemical impedance spectroscopy (EIS), and Fourier transform infrared (FT-IR) techniques. In the Scherrer model, the average crystallite sizes of 34.9, 42.0, and 24.1 nm were estimated for the AgI, Ag2WO4, and the binary catalyst, while the values were 91, 13, and 85 nm by the Williamson-Hall model. FTIR confirmed the presence of W-O-W, O-W-O, Ag-I, and O-Ag-O bonds in the coupled material. DRS results showed absorption edge wavelengths of 451, 462, and 495 nm (corresponding to the band gap values of 2.75, 2.68, and 2.51 eV) for Ag2WO4, AgI, and AgI/Ag2WO4 catalyst, respectively. Synergistic photocatalytic activity of the coupled system was achieved towards ceftriaxone (CTX) in an aqueous solution (about 33% 10 ppm CTX solution was degraded without any optimization in the initial conditions of catal dose 0.3 g/L (Ag2WO4:AgI with mole ratio 1:2 and 30 min abrasion time), and irrad. time 45 min, CCTX). This boosted effect depended on the AgI:Ag2WO4 mole ratio and grinding time for the mechanical preparation of the binary catalyst (optimums: mole ratio of 4:1 and time 30 min). The photodegradation kinetics obeyed the Hinshelwood model with the apparent first-order rate constant (k) of 0.013 min-1 (t1/2 = 53.30 min). Performing the COD on the photodegraded CTX solutions got a Hinshelwood plot with a slope of 0.019 min-1 (t1/2 = 36.5 min).
Collapse
Affiliation(s)
- Sabereh Salesi
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
8
|
Vahabirad S, Nezamzadeh-Ejhieh A, Mirmohammadi M. The coupled BiOI/(BiO)2CO3 catalyst: Brief characterization, and study of its photocatalytic kinetics. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Suresh R, Rajendran S, Kumar PS, Hoang TKA, Soto-Moscoso M. Halides and oxyhalides-based photocatalysts for abatement of organic water contaminants - An overview. ENVIRONMENTAL RESEARCH 2022; 212:113149. [PMID: 35378122 DOI: 10.1016/j.envres.2022.113149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Recently, halides (silver halides, AgX; perosvkite halides, ABX3) and oxyhalides (bismuth oxyhalides, BiOX) based nanomaterials are noticeable photocatalysts in the degradation of organic water pollutants. Therefore, we review the recent reports to explore improvement strategies adopted in AgX, ABX3 and BiOX (X = Cl, Br and I)-based photocatalysts in water pollution remediation. Herein, the photocatalytic degradation performances of each type of these photocatalysts were discussed. Strategies such as tailoring the morphology, crystallographic facet exposure, surface area, band structure, and creation of surface defects to improve photocatalytic activities of pure halides and BiOCl photocatalysts are emphasized. Other strategies like metal ion and/or non-metal doping and construction of composites, adopted in these photocatalysts were also reviewed. Furthermore, the way of production of active radicals by these photocatalysts under ultraviolet/visible light source is highlighted. The deciding factors such as structure of pollutant, light sources and other parameters on the photocatalytic performances of these materials were also explored. Based on this literature survey, the need of further research on AgX, ABX3 and BiOX-based photocatalysts were suggested. This review might be beneficial for researchers who are working in halides and oxyhalides-based photocatalysis for water treatment.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, Boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | | |
Collapse
|
10
|
Pourshirband N, Nezamzadeh-Ejhieh A. The boosted activity of AgI/BiOI nanocatalyst: a RSM study towards Eriochrome Black T photodegradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45276-45291. [PMID: 35143003 DOI: 10.1007/s11356-022-19040-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, critical environmental pollution needs some novel, simple, effective, and cost-effective catalysts with high efficiency in the visible region of the light. Thus, the AgI/BiOI coupled nanocatalyst sample (CS) was prepared and briefly characterized. The pHpzc values of 6.2, 5.4, and 4.5 were estimated for AgI, BiOI, and AgI/BiOI samples. Based on the PXRD results, average crystallite sizes of 35.2, 34.7, and 34.1 nm were obtained for AgI, BiOI, and AgI/BiOI samples from the Scherrer formula and 38.3, 25.6, and 25.6 nm by the Williamson-Hall formula. SEM image confirmed a sheet-like BiOI morphology covered by AgI nanoparticles. The simultaneous interactions of the influencing variables on the boosted photocatalytic activity of CS sample towards Eriochrome Black T (EBT) were evaluated by response surface methodology (RSM) (under 100-W tungsten lamp irradiation with 230 mW/m2.nm irradiance). The goodness of the model was confirmed by the significance of the model (F value of 65.68 > F0.05, 14, 13 = 2.55) and a non-significant LOF (F value of 0.97 < F0.05, 10, 3 = 8.79) at a 95% confidence interval obtained in ANOVA analysis of the results. The center point runs have the following conditions: catalyst dose: 0.68 g/L; pH: 7.5; CEBT: 7.25 mg/L; and irradiation time: 53.5 min, while the optimal run included the following conditions: catalyst dose: 1.0 g/L; pH: 4; CEBT: 10 mg/L; and irradiation time: 80 min. About 95% of EBT molecules were degraded in the optimal conditions.
Collapse
Affiliation(s)
- Nafiseh Pourshirband
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P. O. Box 311-86145, Shahreza, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
11
|
Hassani A, Malhotra M, Karim AV, Krishnan S, Nidheesh PV. Recent progress on ultrasound-assisted electrochemical processes: A review on mechanism, reactor strategies, and applications for wastewater treatment. ENVIRONMENTAL RESEARCH 2022; 205:112463. [PMID: 34856168 DOI: 10.1016/j.envres.2021.112463] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 05/26/2023]
Abstract
The electrochemical advanced oxidation processes (EAOPs) have received significant attention among the many other water and wastewater treatment technologies. However, achieving a desirable removal effect with a single technique is frequently difficult. Therefore, the integration of ultrasound technique with other processes such as electrocoagulation, electro-Fenton, and electrooxidation is a critical way to achieve effective organic pollutants decomposition from wastewater. This review paper is focused on ultrasound-assisted electrochemical (US/electrochemical) processes, so-called sonoelectrochemical processes of various organic pollutants. Emphasis was given to recently published articles for discussing the results and trends in this research area. The use of ultrasound and integration with electrochemical processes has a synergistic impact owing to the physical and chemical consequences of cavitation, resulting in enhancing the mineralization of organic pollutants. Various types of sonoelectrochemical reactors (batch and continuous) employed in the US/electrochemical processes were reviewed. In addition, the strategies to avoid passivation, enhanced generation of reactive oxygen species, and mixing effect are reviewed. Finally, concluding remarks and future perspectives on this research topic are also explored and recommended.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Sukanya Krishnan
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
12
|
Synthesis of BiOI/Mordenite Composites for Photocatalytic Treatment of Organic Pollutants Present in Agro-Industrial Wastewater. NANOMATERIALS 2022; 12:nano12071161. [PMID: 35407279 PMCID: PMC9000862 DOI: 10.3390/nano12071161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Recently, bismuth oxyiodide (BiOI) is an attractive semiconductor to use in heterogeneous photocatalysis processes. Unfortunately, BiOI individually shows limited photocatalytic efficiency, instability, and a quick recombination of electron/holes. Considering the practical application of this semiconductor, some studies show that synthetic zeolites provide good support for this photocatalyst. This support material permits a better photocatalytic efficiency because it prevents the quick recombination of photogenerated pairs. However, the optimal conditions (time and temperature) to obtain composites (BiOI/ synthetic zeolite) with high photocatalytic efficiency using a coprecipitation-solvothermal growth method have not yet been reported. In this study, a response surface methodology (RSM) based on a central composite design (CCD) was applied to optimize the synthesis conditions of BiOI/mordenite composites. For this purpose, eleven BiOI/mordenite composites were synthesized using a combined coprecipitation-solvothermal method under different time and temperature conditions. The photocatalytic activities of the synthesized composites were evaluated after 20 min of photocatalytic oxidation of caffeic acid, a typical organic pollutant found in agro-industrial wastewater. Moreover, BiOI/mordenite composites with the highest and lowest photocatalytic activity were physically and chemically characterized using nitrogen adsorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and diffuse reflectance spectroscopy (DRS). The optimal synthesis conditions prove to be 187 °C and 9 h. In addition, the changes applied to the experimental conditions led to surface property modifications that influenced the photocatalytic degradation efficiency of the BiOI/mordenite composite toward caffeic acid photodegradation.
Collapse
|
13
|
Strong coordination ability of sulfur with cobalt for facilitating scale-up synthesis of Co 9S 8 encapsulated S, N co-doped carbon as a trifunctional electrocatalyst for oxygen reduction reaction, oxygen and hydrogen evolution reaction. J Colloid Interface Sci 2022; 608:2623-2632. [PMID: 34794809 DOI: 10.1016/j.jcis.2021.10.182] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/24/2022]
Abstract
High activity trifunctional non-noble electrocatalysts, targeting oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and oxygen evolution reaction (OER), are rationally designed by integrating the merits of both Co9S8 nanoparticles and carbons nanosheets. Herein, Co9S8 loaded with S, N co-doped carbon core-shell catalyst (Co9S8@SNC) was reasonably designed and synthesized by using the strong coordination effect between Co2+ and CS at the molecular level. The significant synergistic effect between the S, N co-doped carbon shell and Co9S8 core endows the catalyst with excellent catalytic performance for ORR, HER, and OER reactions. The carbon shell enhances the conductivity of the hybrid material, while the Co9S8 core provides the main catalytic active sites. More specifically, the half-wave potential for ORR is 0.846 mV, and the overpotential at 10 mA cm-2 for OER and HER are 320 mV and 170 mV, respectively. To test its practical application, zinc-air battery assembled by Co9S8@SNC shows a high power density of 239 mW cm-2, excellent rechargeability, and long cyclic stability. This work provides a promising and extensible method to in-situ synthesize core-shell metal sulfides loaded S, N co-doped carbon composites, which can be a promising candidate for electrocatalytic material in energy storage and conversion devices.
Collapse
|
14
|
Faisal M, Rashed MA, Ahmed J, Alsaiari M, Jalalah M, Alsareii SA, Harraz FA. Au nanoparticles decorated polypyrrole-carbon black/g-C 3N 4 nanocomposite as ultrafast and efficient visible light photocatalyst. CHEMOSPHERE 2022; 287:131984. [PMID: 34438206 DOI: 10.1016/j.chemosphere.2021.131984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Modification and bandgap engineering are proposed to be extremely significant in improving the photocatalytic activity of novel photocatalysts. The current research focused on the fabrication of ultrafast and efficient visible light-responsive ternary photocatalyst containing g-C3N4 nanostructures in conjugation with polypyrrole doped carbon black (PPy-C) and gold (Au) nanoparticles by highly effectual, simple, and straightforward methodology. Various analytical techniques like XRD, FESEM, TEM, XPS, FTIR, and UV-Vis spectroscopy were applied for characterization purposes. The XRD and XPS results confirmed the successful creation of a nanocomposite framework among Au, PPy-C and g-C3N4. The TEM images revealed that bare g-C3N4 holds sheets or layered graphitic structure with sizes ranging from 100 to 300 nm. The sponge-like PPy-C network intermingled perfectly with g-C3N4 sheets along with homogeneously distributed 5-15 nm Au nanoparticles. The band gap energy (Eg) for bare g-C3N4, PPy-C/g-C3N4 and Au@PPy-C/g-C3N4 nanocomposites were found to be 2.74, 2.68, and 2.60 eV, respectively. The photocatalytic activity for all newly designed photocatalysts have been assessed during the degradation of insecticide Imidacloprid and methylene blue (MB) dye, where Au@PPy-C/C3N4 was found to be extremely efficient with ultrafast removal of both imidacloprid and MB in just 25 min of visible light irradiation. It was revealed that the Au@PPy-C/g-C3N4 ternary photocatalyst removed 96.0% of target analyte imidacloprid, which is ⁓ 2.91 times more efficient than bare g-C3N4 in treating imidacloprid. This report provides a distinctly promising, highly effectual and straightforward route to destruct extremely toxic and notorious pollutants and opens a new gateway in the present challenging scenario of environmental concerns.
Collapse
Affiliation(s)
- M Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts, Najran University, Saudi Arabia
| | - Md A Rashed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia
| | - Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Saudi Arabia
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Electrical Engineering, Faculty of Engineering, Najran University, Saudi Arabia
| | - S A Alsareii
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran, 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo, 11421, Egypt.
| |
Collapse
|
15
|
Toghan A, Modwi A. Boosting unprecedented indigo carmine dye photodegradation via mesoporous MgO@g-C3N4 nanocomposite. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113467] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Iazdani F, Nezamzadeh-Ejhieh A. The photocatalytic rate of ZnO supported onto natural zeolite nanoparticles in the photodegradation of an aromatic amine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53314-53327. [PMID: 34031830 DOI: 10.1007/s11356-021-14544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Aniline and its derivate are critical environmental pollutants, and thus, the introduction of an eco-friendly catalyst for removing them is an important research future. The ZnO supported on the ball-mill prepared clinoptilolite nanoparticles (CNPs) was prepared via an ion-exchange process followed by the calcination process. The amount of loaded ZnO in the ZnO-CNP (CZ) samples varied as 0.54, 0.63, 0.72, and 0.86 meq/g as the Zn(II) concentration in the ion-exchange solution varied from 0.1 to 0.5 M. The ZnO-CNP catalyst was briefly characterized by XRD, FTIR, and DRS techniques. The pHpzc value for the various ZnO-CNPs was about 7.1 that had no change with the ZnO loading. By applying the Scherrer equation on the XRD results, a nano-dimension of about 50 nm was obtained for the catalyst. Bandgap energy of the ZnO-CNP samples was estimated by applying the Kubelka-Munk equation on the DRS reflectance spectra. The value for the CZ2 catalyst was about 3.64 eV. The supported ZnO-CNP sample was then used in the photodegradation of 2,4-dichloroaniline (DCA). Raw zeolite showed a relatively low photocatalytic activity. The degradation efficiency was followed by recording the absorbance of the DCA solution by UV-Vis spectrophotometer. The effects of the essential critical operating factors on the degradation efficiency were kinetically studied by applying the Hinshelwood equation to the results. The ZnO-CNP catalyst with 2 w% ZnO showed the best photocatalytic rate in the optimal conditions of 0.75 g/L, CDCA: 15 ppm, and the initial pH: 5.8. Finally, HPLC analysis of the blank and the photodegraded DCA solutions at 180 and 300 min confirmed 74 and 87% of DCA molecules were degraded during these times. The results confirm that supported ZnO onto clinoptilolite caused enhanced photocatalytic activity because the zeolite internal electrical field prevents the e-/h+ recombination.
Collapse
Affiliation(s)
- Fereshteh Iazdani
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, P.O. Box 311-86145, Shahreza, Isfahan, Iran.
| |
Collapse
|
17
|
Wang Y, Lyu Y, Wang S, Du H. Generation of reactive oxygen species from oxygen microbubbles in phosphoric acid solution and its application of ferrous iron oxidation. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Pourshirband N, Nezamzadeh-Ejhieh A. An efficient Z-scheme CdS/g-C3N4 nano catalyst in methyl orange photodegradation: Focus on the scavenging agent and mechanism. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116543] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
A statistical modeling-optimization approach for efficiency photocatalytic degradation of textile azo dye using cerium-doped mesoporous ZnO: A central composite design in response surface methodology. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Artagan Ö, Vaizoğullar Aİ, Uğurlu M. Activated carbon-supported NiS/CoS photocatalyst for degradation of methyl violet (MV) and selective disinfection process for different bacteria under visible light irradiation. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2021. [DOI: 10.1080/16583655.2021.1930718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Öge Artagan
- Vocational School of Health Care, Medical Laboratory Program, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Ali İmran Vaizoğullar
- Vocational School of Health Care, Medical Laboratory Program, Muğla Sıtkı Koçman University, Muğla, Turkey
| | - Mehmet Uğurlu
- Faculty of Science, Department of Chemistry, Ağrı Ibrahim Çeçen University, Ağrı, Turkey
| |
Collapse
|