1
|
Hockey EK, McLane N, Vlahos K, McCaslin LM, Dodson LG. Matrix-formation dynamics dictate methyl nitrite conformer abundance. J Chem Phys 2024; 160:094303. [PMID: 38436440 DOI: 10.1063/5.0188433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Methyl nitrite has two stable conformational isomers resulting from rotation about the primary C-O-N-O dihedral angle: cis-CH3ONO and trans-CH3ONO, with cis being more stable by ∼5 kJ/mol. The barrier to rotational interconversion (∼45 kJ/mol) is too large for isomerization to occur under ambient conditions. This paper presents evidence of a change in conformer abundance when dilute CH3ONO is deposited onto a cold substrate; the relative population of the freshly deposited cis conformer is seen to increase compared to its gas-phase abundance, measured by in situ infrared spectroscopy. We observe abundance changes depending on the identity of the bath gas (N2, Ar, and Xe) and deposition angle. The observations indicate that the surface properties of the growing matrix influence conformer abundance-contrary to the widely held assumption that conformer abundance in matrices reflects gas-phase abundance. We posit that differences in the angle-dependent host-gas deposition dynamics affect the growing surfaces, causing changes in conformer abundances. Quantum chemistry calculations of the binding energies between CH3ONO and a single bath-gas component reveal that significant energetic stabilization is not observed in 1:1 complexes of N2:CH3ONO, Ar:CH3ONO, or Xe:CH3ONO. From our results, we conclude that the growing surface plays a significant role in trapping cis-CH3ONO more effectively than trans-CH3ONO, likely because cis-CH3ONO is more compact. Taken together, the observations highlight the necessity for careful characterization of conformers in matrix-isolated systems, emphasizing a need for further study into the deposition dynamics and surface structure of chemically inert matrices.
Collapse
Affiliation(s)
- Emily K Hockey
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Nathan McLane
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Korina Vlahos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | | | - Leah G Dodson
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
2
|
Turner AM, Marks JH, Luo Y, Lechner JT, Klapötke TM, Sun R, Kaiser RI. Electron-Induced Decomposition of Solid 1,1-Diamino-2,2-dinitroethylene (FOX-7) at Cryogenic Temperatures. J Phys Chem A 2023; 127:3390-3401. [PMID: 37027514 DOI: 10.1021/acs.jpca.3c01035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Solid FOX-7 (1,1-diamino-2,2-dinitroethylene), an energetic material of interest due to its high stability and low shock/thermal sensitivity, was exposed to energetic electrons at 5 K to explore the fundamental mechanisms leading to decomposition products and provide a better understanding of the reaction pathways involved. As a result of the radiation exposure, infrared spectroscopy revealed carbon dioxide (CO2) and carbon monoxide (CO) trapped in the FOX-7 matrix, while these compounds along with water (H2O), nitrogen monoxide (NO), and cyanogen (C2N2) were detected exploiting quadrupole mass spectrometry both during irradiation and during the warming phase from 5 to 300 K. Photoionization reflectron time-of-flight mass spectrometry detected small molecules such as ammonia (NH3), nitrogen monoxide (NO), and nitrogen dioxide (NO2) as well as more complex molecules up to 96 amu. Potential reaction pathways are presented and assignments are discussed. Among the reaction mechanisms, the importance of an initial nitro-to-nitrite isomerization is highlighted by the observed decomposition products.
Collapse
Affiliation(s)
- Andrew M Turner
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Jasmin T Lechner
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, München 81377, Germany
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| |
Collapse
|
3
|
Turner AM, Luo Y, Marks JH, Sun R, Lechner JT, Klapötke TM, Kaiser RI. Exploring the Photochemistry of Solid 1,1-Diamino-2,2-dinitroethylene (FOX-7) Spanning Simple Bond Ruptures, Nitro-to-Nitrite Isomerization, and Nonadiabatic Dynamics. J Phys Chem A 2022; 126:4747-4761. [PMID: 35852300 DOI: 10.1021/acs.jpca.2c02696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The UV photolysis of solid FOX-7 at 5 K with 355 and 532 nm photons was investigated to unravel initial isomerization and decomposition pathways. Isomer-selective single photon ionization coupled with reflectron time-of-flight mass spectrometry (ReTOF-MS) documented the nitric oxide (NO) loss channel at 355 nm along with a nitro-to-nitrite isomerization, which was observed by using infrared spectroscopy, representing the initial reaction pathway followed by O─NO bond rupture of the nitrite moiety. A residual gas analyzer detected molecular oxygen for the 355 and 532 nm photolysis at a ratio of 4.3 ± 0.3:1, which signifies FOX-7 as an energetic material that provides its own oxidant once the decomposition starts. Overall branching ratios for molecular oxygen versus nitric oxide were derived to be 700 ± 100:1 at 355 nm. It is notable that this is the first time that molecular oxygen was detected as a decomposition product of FOX-7. Computations show that atomic oxygen, which later combines to form molecular oxygen, is likely released from a nitro group involving conical intersections. The condensed phase potential energy profile computed at the CCSD(T) and CASPT2 level correlates well with the experiments and highlights the critical roles of conical intersections, nonadiabatic dynamics, and the encapsulated environment that dictate the mechanism of the reaction through intermolecular hydrogen bonds.
Collapse
Affiliation(s)
- Andrew M Turner
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Yuheng Luo
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Joshua H Marks
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Rui Sun
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| | - Jasmin T Lechner
- Department of Chemistry, Ludwig-Maximilian University of Munich, 81377 München, Germany
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, 81377 München, Germany
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii, Honolulu, Hawaii 96822, United States
| |
Collapse
|
4
|
Johnson JL, Polavarapu PL. Chiral Molecular Structure Determination for a Desired Compound Just from Its Molecular Formula and Vibrational Optical Activity Spectra. J Phys Chem A 2021; 125:8000-8013. [PMID: 34478311 DOI: 10.1021/acs.jpca.1c06369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel proof-of-concept model for chiral molecular structure determination using just the molecular formula and vibrational optical activity (VOA) spectra is presented. To verify this concept, the molecular formula of a desired compound is used to generate all possible chiral structural isomers and their VOA spectra are predicted. The similarity analyses of predicted VOA spectra were then carried out in two different ways: (a) similarity between VOA spectrum of one structural isomer with those of the rest, referred to as cross-correlations; (b) similarity between VOA spectra of all chiral structural isomers with the experimental VOA spectra of the desired compound. Three different molecular formulae, C4H8O, C3H5ClO, and C6H10O, and their chiral structural isomers (6, 9, and 75 respectively), were investigated. In each case, the correct chiral molecular structure of the desired compound was identified without ambiguity. Cross-correlation analysis revealed the uniqueness of VOA spectra in deducing the chiral molecular structure solely from its molecular formula. Different chiral structural isomers associated with the molecular formula CH3NO2 were also found to have no significant cross-correlations between their VOA spectra, opening a pathway to detect and identify the elusive chiral N-hydroxyoxaziridine from its VOA spectra.
Collapse
Affiliation(s)
- Jordan L Johnson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Prasad L Polavarapu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Singh SK, Vuppuluri V, Sun BJ, Chang BY, Eckhardt AK, Son SF, Chang AHH, Kaiser RI. Identification of Elusive Keto and Enol Intermediates in the Photolysis of 1,3,5-Trinitro-1,3,5-Triazinane. J Phys Chem Lett 2021; 12:6062-6069. [PMID: 34169725 DOI: 10.1021/acs.jpclett.1c01610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enols have emerged as critical reactive intermediates in combustion processes and in fundamental molecular mass growth processes in the interstellar medium, but the elementary reaction pathways to enols in extreme environments, such as during the decomposition of molecular energetic materials, are still elusive. Here, we report on the original identification of the enol and keto isomers of oxy-s-triazine, as well as its deoxygenated derivative 1,3,5-triazine, formed in the photodecomposition processes of 1,3,5-trinitro-1,3,5-triazinane (RDX)-a molecular energetic material. The identification was facilitated by exploiting isomer-selective tunable photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) in conjunction with quantum chemical calculations. The present study reports the first experimental evidence of an enol intermediate in the dissociation domain of a nitramine-based energetic material. Our investigations suggest that the enols like 1,3,5-triazine-2-ol could be the source of hydroxyl radicals, and their inclusion in the theoretical models is important to understand the unprecedented chemistry of explosive materials.
Collapse
Affiliation(s)
- Santosh K Singh
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| | - Vasant Vuppuluri
- Mechanical Engineering, Purdue Energetics Research Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bing-Jian Sun
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Bo-Yu Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - André K Eckhardt
- Department of Chemistry, MIT, Cambridge, Massachusetts 02139, United States
| | - Steven F Son
- Mechanical Engineering, Purdue Energetics Research Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Agnes H H Chang
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974, Taiwan
| | - Ralf I Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
- W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, United States
| |
Collapse
|