1
|
Hooshmand S, Kassanos P, Keshavarz M, Duru P, Kayalan CI, Kale İ, Bayazit MK. Wearable Nano-Based Gas Sensors for Environmental Monitoring and Encountered Challenges in Optimization. SENSORS (BASEL, SWITZERLAND) 2023; 23:8648. [PMID: 37896744 PMCID: PMC10611361 DOI: 10.3390/s23208648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
With a rising emphasis on public safety and quality of life, there is an urgent need to ensure optimal air quality, both indoors and outdoors. Detecting toxic gaseous compounds plays a pivotal role in shaping our sustainable future. This review aims to elucidate the advancements in smart wearable (nano)sensors for monitoring harmful gaseous pollutants, such as ammonia (NH3), nitric oxide (NO), nitrous oxide (N2O), nitrogen dioxide (NO2), carbon monoxide (CO), carbon dioxide (CO2), hydrogen sulfide (H2S), sulfur dioxide (SO2), ozone (O3), hydrocarbons (CxHy), and hydrogen fluoride (HF). Differentiating this review from its predecessors, we shed light on the challenges faced in enhancing sensor performance and offer a deep dive into the evolution of sensing materials, wearable substrates, electrodes, and types of sensors. Noteworthy materials for robust detection systems encompass 2D nanostructures, carbon nanomaterials, conducting polymers, nanohybrids, and metal oxide semiconductors. A dedicated section dissects the significance of circuit integration, miniaturization, real-time sensing, repeatability, reusability, power efficiency, gas-sensitive material deposition, selectivity, sensitivity, stability, and response/recovery time, pinpointing gaps in the current knowledge and offering avenues for further research. To conclude, we provide insights and suggestions for the prospective trajectory of smart wearable nanosensors in addressing the extant challenges.
Collapse
Affiliation(s)
- Sara Hooshmand
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Panagiotis Kassanos
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Meysam Keshavarz
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, South Kensington, London SW7 2AZ, UK;
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK
| | - Pelin Duru
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - Cemre Irmak Kayalan
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| | - İzzet Kale
- Applied DSP and VLSI Research Group, Department of Computer Science and Engineering, University of Westminster, London W1W 6UW, UK;
| | - Mustafa Kemal Bayazit
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey; (P.D.); (C.I.K.)
| |
Collapse
|
2
|
Halwar DK, Deshmane VV, Patil AV. Al Modified Orthorhombic Molybdenum Trioxide as NO 2 gas sensor. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Molybdenum Oxide Nanoparticle Aggregates Grown by Chemical Vapor Transport. MATERIALS 2022; 15:ma15062182. [PMID: 35329634 PMCID: PMC8954492 DOI: 10.3390/ma15062182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023]
Abstract
In this study, the advanced chemical vapor transport (CVT) method in combination with the quenching effect is introduced for creating molybdenum oxide nanoparticle arrays, composed of the hierarchical structure of fine nanoparticles (NPs), which are vertically grown with a homogeneous coverage on the individual carbon fibers of carbon fiber paper (CFP) substrates. The obtained molybdenum oxide NPs hold a metastable high-temperature γ-Mo4O11 phase along with a stable α-MoO3 phase by the quenching effect. Furthermore, such a quenching effect forms thinner and smaller nanoparticle aggregates by suppressing the growth and coalescence of primary particles. The molybdenum oxide nanoparticle aggregates are prepared using two different types of precursors: MoO3 and a 1:1 (mol/mol) mixture of MoO3 and activated carbon. The results characterized using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy show that the relative amount of α-MoO3 to γ-Mo4O11 within the prepared NPs is dependent on the precursor type; a lower amount of α-MoO3 to γ-Mo4O11 is obtained in the NPs prepared using the mixed precursor of MoO3 and carbon. This processing–structure landscape study can serve as the groundwork for the development of high-performance nanomaterials in various electronic and catalytic applications.
Collapse
|