1
|
Ali AT, Guda MA, Oraibi AI, Salih IK, Shather AH, Abd Ali AT, Azzawi AL, Almashhadani HA. Fe 3O 4 supported [Cu(ii)(met)(pro-H) 2] complex as a novel nanomagnetic catalytic system for room temperature C-O coupling reactions. RSC Adv 2023; 13:22538-22548. [PMID: 37497095 PMCID: PMC10367590 DOI: 10.1039/d3ra03509c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
In this study, a newly-designed copper(ii) complex of metformin and l-proline which was immobilized on Fe3O4 MNPs was developed. The structure of the catalyst platform was fully characterized using spectroscopic analyses. Moreover, the catalytic activity of [Fe3O4@Cu(ii)(Met)(Pro-H)2] was investigated in a one-pot synthesis of a variety of functionalized ethers in reasonable to excellent yields through Ullman reaction in an aqueous environment using various aryl halides, phenol, and Cs2CO3 and without using any external Cu-reducing agents. Notably, gentle catalytic conditions, quick reaction times, applicability, low cost, and preventing dangerous chemicals and solvents during synthesis and catalytic application are some of the superior properties of the [Fe3O4@Cu(ii)(Met)(Pro-H)2] complex. Furthermore, the catalyst can be reused for several runs (at least eight times) without remarkable loss in efficiency.
Collapse
Affiliation(s)
- Ahmed Talal Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Basrah Iraq
| | - Muthik A Guda
- Department of Ecology Science, College of Science, Kufa University Iraq
| | - Amjad I Oraibi
- Department of Pharmacy, Al-Manara College for Medical Sciences Iraq
| | - Issam K Salih
- Department of Chemical Engineering and Petroleum Industries, Al-Mustaqbal University College 51001 Hilla Babylon Iraq
| | - A H Shather
- Department of Computer Engineering Technology, Al Kitab University Altun Kopru Kirkuk 00964 Iraq
| | - Abbas Talib Abd Ali
- Department of Medical Laboratories Technology, National University of Science and Technology Dhi Qar Iraq
| | | | | |
Collapse
|
2
|
Ahmadi S, Habibi D, Heydari S, Roshani Asl E. The capable xanthine-based adsorbent for removal of the Cd(II), Ni(II) and Pb(II) ions from aqueous solution via their complexation and the use of its corresponding Cd complex for the green synthesis of indazolophthalazinetriones. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04868-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Mansoorianfar M, Nabipour H, Pahlevani F, Zhao Y, Hussain Z, Hojjati-Najafabadi A, Hoang HY, Pei R. Recent progress on adsorption of cadmium ions from water systems using metal-organic frameworks (MOFs) as an efficient class of porous materials. ENVIRONMENTAL RESEARCH 2022; 214:114113. [PMID: 36030914 DOI: 10.1016/j.envres.2022.114113] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Various articles have been written about MOFs, which are organic-inorganic polymer structures that are unique in three-dimensional porosity, crystalline structure, and their ability to adsorb cadmium ion pollutants from aqueous solutions. These materials possess active metal sites, highly porous structures, high specific surfaces, high chemical functionality, and porous topologies. It is necessary to study adsorption kinetics, isotherms, and mechanisms in order to better understand the adsorption process. Adsorption kinetics can provide information about the adsorption rate and reaction pathway of adsorbents. Adsorption isotherms analyze the possibility of absorbances based on the Gibbs equation and thermodynamic theories. Moreover, in practical applications, knowledge of the adsorption mechanism is essential for predicting adsorption reactions and designing MOFs structures. In this review, the latest suggested adsorption mechanisms, kinetics, and isotherms of MOFs-based materials for removing cadmium ions are presented. A comparison is then conducted between different MOFs and the mechanisms of cadmium ion removal. We also discuss the future role of MOFs in removing environmental contaminants. Lastly, we discuss the gap in research and limitations of MOFs as adsorbents in actual applications, and probable technology development for the development of cost-efficient and sustainable MOFs for metal ion removal.
Collapse
Affiliation(s)
- Mojtaba Mansoorianfar
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Hafezeh Nabipour
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Farshid Pahlevani
- Centre for Sustainable Materials Research and Technology SMaRT@UNSW, School of Materials Science and Engineering, University of New South Wales (UNSW), Australia
| | - Yuewu Zhao
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zahid Hussain
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Akbar Hojjati-Najafabadi
- College of Rare Earths, Jiangxi University of Science and Technology, No. 86, Hongqi Ave., Ganzhou, Jiangxi, 341000, China; Faculty of Materials, Metallurgy and Chemistry, School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Hien Y Hoang
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam; Faculty of Natural Sciences, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|