1
|
Garmsiri H, Jahani S, Kazemzadeh Y, Sharifi M, Riazi M, Azin R. Stability of the emulsion during the injection of anionic and cationic surfactants in the presence of various salts. Sci Rep 2023; 13:11337. [PMID: 37443178 DOI: 10.1038/s41598-023-38428-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Smart water injection is one of the engineering techniques to enhance oil recovery (EOR) from carbonate and sandstone reservoirs that have been widely used in recent decades. Wettability alteration and IFT are among the essential and influential mechanisms that can be mentioned to achieve EOR. One of the critical issues in the field of EOR is the effect of reservoir ions on the formation and stability of the emulsion. Investigating the role and performance of these ions during EOR processes is of significant importance. These processes are based on smart water injection and natural production. In this research, stability was investigated and formed during the injection of different concentrations of anionic and cationic surfactants, respectively alpha olefin sulfonate (AOS) and cetrimonium bromide (CTAB), into a water-oil emulsion with a volume ratio of 30-70. Considering the droplet diameter distribution and the flow speed of separation by centrifugation, the optimal concentration level has been investigated in both surfactants. Based on the results, the highest stability and emulsion formation occurred in the presence of AOS surfactant. Then different concentrations of CaCl2, MgCl2, and NaCl salts were added in optimal concentrations of both surfactants. The formation and stability of the emulsion was checked by examining the distribution of the droplet diameter and the separation flow rate. AOS anionic surfactant had the most stability in the presence of MgCl2 salt, and better performance in stability of the emulsion was obtained. The maximum number of droplet diameters in the optimal concentration for AOS and CTAB surfactant systems is 1010 and 880, respectively, and for binary systems of AOS surfactant and MgCl2, CaCl2 and NaCl salts, it is 2200, 1120 and 1110, respectively. Furthermore, for the CTAB binary system in the presence of MgCl2, CaCl2, and NaCl salts, it is 1200, 1110, and 1100, respectively. The stability of the emulsion of salts in the presence of both AOS and CTAB surfactants was MgCl2 > CaCl2 > NaCl.
Collapse
Affiliation(s)
- Hamid Garmsiri
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
- Enhanced Oil Recovery (EOR) Research Centre, IOR EOR Research Institute, Shiraz University, Shiraz, Iran
| | - Shahriar Jahani
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Yousef Kazemzadeh
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
- Persian Gulf University-Northeast Petroleum University of China Joint Research Laboratory, Oil and Gas Research Center, Persian Gulf University, Bushehr, Iran.
| | - Mohammad Sharifi
- Department of Petroleum Engineering, Amirkabir University of Technology, Tehran Polytechnic, Tehran, Iran
| | - Masoud Riazi
- Department of Petroleum Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
- Enhanced Oil Recovery (EOR) Research Centre, IOR EOR Research Institute, Shiraz University, Shiraz, Iran.
| | - Reza Azin
- Department of Petroleum Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
- Persian Gulf University-Northeast Petroleum University of China Joint Research Laboratory, Oil and Gas Research Center, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
2
|
Elkhatib O, Xie Y, Mohamed A, Arshadi M, Piri M, Goual L. Pore-Scale Study of Wettability Alteration and Fluid Flow in Propped Fractures of Ultra-Tight Carbonates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1870-1884. [PMID: 36693109 DOI: 10.1021/acs.langmuir.2c02900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The in situ change in oil flow behavior inside propped fractures due to wettability alteration of proppant grains and fracture surfaces was thoroughly investigated for the first time in this study. A series of microscale flow experiments were performed in mixed-wet fractured and propped miniature ultra-tight carbonate cores where the effect of wettability on oil bridging and fracture oil layer integrity was probed during oil production. During the initial production, proppant wettability changed toward an intermediate-wet state (contact angle (CA) = 96°) while that of fracture surfaces became strongly oil-wet (CA = 139°). Consequently, the fracture oil layer grew in size on both fracture surfaces and imbibed into the proppant pack through piston-like displacement and pore body filling until oil bridges were formed during oil injection. However, subsequent waterflooding induced thinning and rupturing of those bridges due to the accompanying reduction in the threshold capillary pressure of the proppant at higher aging times. The in situ chemical treatment of the proppant by a cationic surfactant (dodecyl tri-methyl ammonium bromide) could reverse its wettability toward weakly water-wet state (CA = 78°) after oil solubilization from the sand grains followed by substitutive surfactant adsorption. Surfactant injection also impacted the wettability of the fracture surface due to oil solubilization, reducing its mean contact angle down to an intermediate range (CA = 99°). As a result, the following oil production cycle yielded a smaller fracture oil layer. The surfactant effect on proppant wettability lasted for 2 weeks while its effect on fracture wettability lasted for more than 6 weeks. Similar flow cycles were performed with an anionic nanoparticle (graphene quantum dot) with hydrogen bonding ability. The nanoparticle solution yielded a quick reduction of the proppant and fracture surface contact angles to nearly 77° and 115°, respectively. Proppant wettability alteration occurred because the nanoparticles self-assembled at the three-point contact region between adsorbed oil and quartz surfaces, leading to oil solubilization in intermediate-wet regions while oil-wet regions remained unchanged. Therefore, re-introducing oil into the fracture instantaneously re-instated the initial wettability state of proppant grains (CA = 88°), deeming the nanoparticle solution ineffective. This study revealed that oil production through hydraulic fractures can be enhanced by monitoring the wettability of the proppant pack. If the production has a high water cut, it is beneficial to use chemical agents that reduce the proppant contact angles to a weakly water-wet state in order to preserve the hydraulic conductivity of the oil layer.
Collapse
Affiliation(s)
- Omar Elkhatib
- Center of Innovation for Flow through Porous Media, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming82071, United States
| | - Yun Xie
- Carl Zeiss Shanghai Co. Ltd., 60 Mei Yue Road, Shanghai200131, China
| | - Abdelhalim Mohamed
- Piri Technologies, 1000 E. University Ave., Dept., 4311, Laramie, Wyoming82071, United States
| | - Maziar Arshadi
- Piri Technologies, 1000 E. University Ave., Dept., 4311, Laramie, Wyoming82071, United States
| | - Mohammad Piri
- Center of Innovation for Flow through Porous Media, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming82071, United States
- Piri Technologies, 1000 E. University Ave., Dept., 4311, Laramie, Wyoming82071, United States
| | - Lamia Goual
- Center of Innovation for Flow through Porous Media, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming82071, United States
| |
Collapse
|