1
|
Wu S, Wu J, Lin L, Jiang R, Wang X, Wen C, Zhu XY. Pharmacokinetics of IMM-H012 in rats using ultra-performance liquid chromatography-tandem mass spectrometry. Biomed Chromatogr 2024; 38:e5905. [PMID: 38806776 DOI: 10.1002/bmc.5905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024]
Abstract
The present study examined the pharmacokinetics of IMM-H012 in rat plasma, utilizing ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Internal standard cilostazol was employed, and plasma samples were processed using acetonitrile precipitation. A mobile phase (acetonitrile-0.1% formic acid in water) with gradient elution was used to achieve chromatographic separation using a UPLC BEH C18 column. In multiple reaction monitoring mode, electrospray ionization MS/MS was utilized in positive ionization mode. Based on findings, the lower limit of quantification was 2 ng/mL, and the linearity of IMM-H012 in rat plasma was found to be acceptable within the range of 2-2000 ng/mL (R2 > 0.995). The intra-day and inter-day precision relative standard deviation was less than 14% of IMM-H012 in rat plasma. The matrix effect was within the range of 102%-107%, and the accuracy ranged from 92% to 113%. Pharmacokinetics of IMM-H012 in rats after oral administration were successfully studied using UPLC-MS/MS.
Collapse
Affiliation(s)
- Shujuan Wu
- Ruian People's Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialei Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Longquan Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rongbin Jiang
- Shandong New Times Pharmaceutical Co., Ltd, Linyi, China
| | - Xianqin Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Xia-Yin Zhu
- Department of Hematology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
2
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Guo W, Shao T, Peng Y, Wang H, Chen ZS, Su H. Chemical composition, biological activities, and quality standards of hawthorn leaves used in traditional Chinese medicine: a comprehensive review. Front Pharmacol 2023; 14:1275244. [PMID: 37927599 PMCID: PMC10623334 DOI: 10.3389/fphar.2023.1275244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Hawthorn leaves also known as crataegi foilum, are a combination of botanical drugs used commonly in Traditional Chinese Medicine. Hawthorn, the plant from which hawthorn leaves are prepared, is distributed in Northeast China, North China, and other regions in China. Hawthorn leaves are known to activate blood circulation and eliminate stasis, invigorating Qi, eliminating turbidity, and reducing the levels of lipids. So far, over a hundred compounds have been isolated from hawthorn leaves, including flavonoids, terpenoids, lignans, organic acids, and nitrogenous compounds. Hawthorn leaves are used for the treatment of hypertension, protecting against ischemic injury, angina, hyperglycemia, hyperlipidemia, and certain other conditions. Several of the currently available clinical preparations also use hawthorn leaves as raw materials, such as Yixintong capsules, Xinan capsules, etc. The present report systematically reviews the chemical composition, biological activities, and quality standards of hawthorn leaves, to provide a scientific basis and reference for detailed research on hawthorn leaves.
Collapse
Affiliation(s)
- Wenjing Guo
- Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Tingting Shao
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Yu Peng
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Haitao Wang
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Haixiang Su
- Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| |
Collapse
|