1
|
Takayama Y, Nishie A, Ishimatsu K, Ushijima Y, Fujita N, Kubo Y, Yoshizumi T, Kouhashi KI, Maehara J, Akamine Y, Ishigami K. Diagnostic potential of T1ρ and T2 relaxations in assessing the severity of liver fibrosis and necro-inflammation. Magn Reson Imaging 2022; 87:104-112. [PMID: 34999164 DOI: 10.1016/j.mri.2022.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/20/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the utility of T1ρ and T2 relaxations for assessing the severity of liver fibrosis (F stage) and necro-inflammation (A stage) in patients with chronic liver disease (CLD). MATERIALS AND METHODS We calculated T1ρ and T2 relaxations of the liver parenchyma in 82 patients who underwent liver surgery. F and A stages of enrolled patients were assessed by referring to surgically resected specimens. The relationships between T1ρ or T2 relaxation and F or A stage were assessed using one-way analysis of variance followed by Tukey's multiple comparison test, Spearman's rank correlation test and a receiver operating characteristic analysis. RESULTS The T1ρ and T2 values of the liver parenchyma were significantly increased as the F and A stages progressed. The T1ρ and T2 values showed significant differences between F0 and F4, between F1 and F4, and between F2 and F4. In addition, T1ρ values showed a significant difference between F0 and F3 as well. The highest diagnostic ability for fibrosis was obtained when differentiating ≥F3 from ≤F2 using T1ρ: the sensitivity was 82.8%, the specificity 79.2% and the area under the curve (AUC) 0.87. The sensitivity and AUC of T1ρ relaxation (46.9% and 0.67) were significantly higher than those of T2 relaxation (29.7% and 0.60) for differentiating ≥A1 from A0. CONCLUSION T1ρ and T2 relaxations have potential as a biochemical marker for assessing the severity of liver fibrosis and necro-inflammation. T1ρ relaxation may be slightly superior to T2 relaxation in terms of diagnostic ability for liver fibrosis and necro-inflammation.
Collapse
Affiliation(s)
- Yukihisa Takayama
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Radiology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Akihiro Nishie
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Keisuke Ishimatsu
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuhiro Ushijima
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuhiro Fujita
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuichiro Kubo
- Department of Molecular Imaging and Diagnostic Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ken-Ichi Kouhashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junki Maehara
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuta Akamine
- Philips Japan. Ltd., Konan 2-13-37, Minato-ku, Tokyo 108-8507, Japan
| | - Kousei Ishigami
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Liang H, Hu C, Lu J, Zhang T, Jiang J, Ding D, Du S, Duan S. Correlation of radiomic features on dynamic contrast-enhanced magnetic resonance with microvessel density in hepatocellular carcinoma based on different models. J Int Med Res 2021; 49:300060521997586. [PMID: 33682491 PMCID: PMC7944531 DOI: 10.1177/0300060521997586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective To explore the correlations of radiomic features of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with microvessel density (MVD) in patients with hepatocellular carcinoma (HCC), based on single-input and dual-input two-compartment extended Tofts (SITET and DITET) models. Methods We compared the quantitative parameters of SITET and DITET models for DCE-MRI in 30 patients with HCC using paired sample t-tests. The correlations of SITET and DITET model parameters with CD31-MVD and CD34-MVD were analyzed using Pearson’s correlation analysis. A diagnostic model of CD34-MVD was established and the diagnostic abilities of models for MVD were analyzed using receiver operating characteristic curve (ROC) analysis. Results There were significant differences between the quantitative parameters in the two kinds of models. Compared with SITET, DITET parameters showed better correlations with CD31-MVD and CD34-MVD. The Ktrans and Ve radiomics features of the DITET model showed high efficiency for predicting the level of CD34-MVD according to ROC analysis, with areas under curves of 0.83 and 0.94, respectively. Conclusion Compared with SITET, the DITET model provides a better indication of the microcirculation of HCC and is thus more suitable for examining patients with HCC.
Collapse
Affiliation(s)
- Hongwei Liang
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging, Soochow University, Suzhou, China.,Department of Radiology, Nantong Third People's Hospital, Nantong, China
| | - Chunhong Hu
- Department of Radiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Medical Imaging, Soochow University, Suzhou, China
| | - Jian Lu
- Department of Radiology, Nantong Third People's Hospital, Nantong, China
| | - Tao Zhang
- Department of Radiology, Nantong Third People's Hospital, Nantong, China
| | - Jifeng Jiang
- Department of Radiology, Nantong Third People's Hospital, Nantong, China
| | - Ding Ding
- Department of Radiology, Nantong Third People's Hospital, Nantong, China
| | - Sheng Du
- Department of Radiology, Nantong Third People's Hospital, Nantong, China
| | | |
Collapse
|
3
|
Moura Cunha G, Navin PJ, Fowler KJ, Venkatesh SK, Ehman RL, Sirlin CB. Quantitative magnetic resonance imaging for chronic liver disease. Br J Radiol 2021; 94:20201377. [PMID: 33635729 DOI: 10.1259/bjr.20201377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease (CLD) has rapidly increased in prevalence over the past two decades, resulting in significant morbidity and mortality worldwide. Historically, the clinical gold standard for diagnosis, assessment of severity, and longitudinal monitoring of CLD has been liver biopsy with histological analysis, but this approach has limitations that may make it suboptimal for clinical and research settings. Magnetic resonance (MR)-based biomarkers can overcome the limitations by allowing accurate, precise, and quantitative assessment of key components of CLD without the risk of invasive procedures. This review briefly describes the limitations associated with liver biopsy and the need for non-invasive biomarkers. It then discusses the current state-of-the-art for MRI-based biomarkers of liver iron, fat, and fibrosis, and inflammation.
Collapse
Affiliation(s)
- Guilherme Moura Cunha
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | | | - Kathryn J Fowler
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| | | | | | - Claude B Sirlin
- Department of Radiology, Liver Imaging Group, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
4
|
Verloh N, Probst U, Utpatel K, Zeman F, Brennfleck F, Werner JM, Fellner C, Stroszczynski C, Evert M, Wiggermann P, Haimerl M. Influence of hepatic fibrosis and inflammation: Correlation between histopathological changes and Gd-EOB-DTPA-enhanced MR imaging. PLoS One 2019; 14:e0215752. [PMID: 31083680 PMCID: PMC6513096 DOI: 10.1371/journal.pone.0215752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Objective To evaluate the influence of an active inflammatory process in the liver on Gd-EOB-DTPA-enhanced MR imaging in patients with different degrees of fibrosis/cirrhosis. Material and methods Overall, a number of 91 patients (61 men and 30 women; mean age 58 years) were included in this retrospective study. The inclusion criteria for this study were Gd-EOB-DTPA-enhanced MRI of the liver and histopathological evaluation of fibrotic and inflammatory changes. T1-weighted VIBE sequences of the liver with fat suppression were evaluated to determine the relative signal change (RE) between native and hepatobiliary phase (20min). In simple and multiple linear regression analyses, the influence of liver fibrosis/cirrhosis (Ishak score) and the histopathological degree of hepatitis (Modified Hepatic Activity Index, mHAI) on RE were evaluated. Results RE decreased significantly with increasing liver fibrosis/cirrhosis (p < 0.001) and inflammation (mHAI, p = 0.004). In particular, a correlation between RE and periportal or periseptal boundary zone hepatitis (moth feeding necrosis, mHAI A, p = 0.001) and portal inflammation (mHAI D, p < 0.001) was observed. In multiple linear regression analysis, both the degree of inflammation and the degree of fibrosis were significant predictors for RE (p < 0.01). Conclusion The results of this study suggest that the MR-based hepatic enhancement index RE is not only influenced by the degree of fibrosis, but also by the degree of inflammation.
Collapse
Affiliation(s)
- N. Verloh
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
- * E-mail:
| | - U. Probst
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - K. Utpatel
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - F Zeman
- Center for Clinical Trials, University Hospital Regensburg, Regensburg, Germany
| | - F. Brennfleck
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - J. M. Werner
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - C. Fellner
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C. Stroszczynski
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M. Evert
- Department of Pathology, University Regensburg, Regensburg, Germany
| | - P. Wiggermann
- Department of Radiology and Nuclear Medicine, Hospital Braunschweig, Braunschweig, Germany
| | - M. Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Serum albumin, total bilirubin, and patient age are independent confounders of hepatobiliary-phase gadoxetate parenchymal liver enhancement. Eur Radiol 2019; 29:5813-5822. [DOI: 10.1007/s00330-019-06179-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
|
6
|
Karageorgis A, Lenhard SC, Yerby B, Forsgren MF, Liachenko S, Johansson E, Pilling MA, Peterson RA, Yang X, Williams DP, Ungersma SE, Morgan RE, Brouwer KLR, Jucker BM, Hockings PD. A multi-center preclinical study of gadoxetate DCE-MRI in rats as a biomarker of drug induced inhibition of liver transporter function. PLoS One 2018; 13:e0197213. [PMID: 29771932 PMCID: PMC5957399 DOI: 10.1371/journal.pone.0197213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Drug-induced liver injury (DILI) is a leading cause of acute liver failure and transplantation. DILI can be the result of impaired hepatobiliary transporters, with altered bile formation, flow, and subsequent cholestasis. We used gadoxetate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), combined with pharmacokinetic modelling, to measure hepatobiliary transporter function in vivo in rats. The sensitivity and robustness of the method was tested by evaluating the effect of a clinical dose of the antibiotic rifampicin in four different preclinical imaging centers. The mean gadoxetate uptake rate constant for the vehicle groups at all centers was 39.3 +/- 3.4 s-1 (n = 23) and 11.7 +/- 1.3 s-1 (n = 20) for the rifampicin groups. The mean gadoxetate efflux rate constant for the vehicle groups was 1.53 +/- 0.08 s-1 (n = 23) and for the rifampicin treated groups was 0.94 +/- 0.08 s-1 (n = 20). Both the uptake and excretion transporters of gadoxetate were statistically significantly inhibited by the clinical dose of rifampicin at all centers and the size of this treatment group effect was consistent across the centers. Gadoxetate is a clinically approved MRI contrast agent, so this method is readily transferable to the clinic. Conclusion: Rate constants of gadoxetate uptake and excretion are sensitive and robust biomarkers to detect early changes in hepatobiliary transporter function in vivo in rats prior to established biomarkers of liver toxicity.
Collapse
Affiliation(s)
- Anastassia Karageorgis
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| | - Stephen C. Lenhard
- Bioimaging, Platform Technology and Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Brittany Yerby
- Research Imaging Sciences, Amgen, Thousand Oaks, California, United States of America
| | - Mikael F. Forsgren
- Center for Medical Image Science and Visualization (CMIV), Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Wolfram MathCore, Linköping, Sweden
| | - Serguei Liachenko
- National Center for Toxicological Research, Division of Neurotoxicology, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Edvin Johansson
- Personalised Healthcare and Biomarkers, Imaging group, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Mark A. Pilling
- Biostatistics, Quantitative Biology, Discovery Sciences, Innovative Medicines and Early Development, AstraZeneca R&D, Cambridge, United Kingdom
| | - Richard A. Peterson
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, Durham, North Carolina, United States of America
| | - Xi Yang
- National Center for Toxicological Research, Division of Systems Biology, United States Food and Drug Administration, Jefferson, Arkansas, United States of America
| | - Dominic P. Williams
- Safety and ADME Translational Sciences, Drug Safety and Metabolism, AstraZeneca, Cambridge, United Kingdom
| | - Sharon E. Ungersma
- Research Imaging Sciences, Amgen, Thousand Oaks, California, United States of America
| | - Ryan E. Morgan
- Department of Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Kim L. R. Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of N orth Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Beat M. Jucker
- Bioimaging, Platform Technology and Sciences, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Paul D. Hockings
- Antaros Medical, BioVenture Hub, Mölndal, Sweden
- MedTech West, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Keller S, Aigner A, Zenouzi R, Kim AC, Meijer A, Weidemann SA, Krech T, Lohse AW, Adam G, Schramm C, Yamamura J. Association of gadolinium-enhanced magnetic resonance imaging with hepatic fibrosis and inflammation in primary sclerosing cholangitis. PLoS One 2018. [PMID: 29513767 PMCID: PMC5841815 DOI: 10.1371/journal.pone.0193929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective To evaluate magnetic resonance imaging (MRI) parameters T2 signal, contrast enhancement (CE), and relative liver enhancement (RLE) of extracellular gadolinium-based contrast agent (GBCA)-enhanced MRI as a marker for hepatic fibrosis and inflammation in patients with primary sclerosing cholangitis (PSC). Methods 3.0-Tesla MRI scans and liver biopsies of 40 patients (41.2 ± 17.1 years) were retrospectively reviewed. Biopsies were obtained within a mean time of 54 ± 55 days to MRI scans and specimens were categorized according to Ishak modified hepatic activity index (mHAI) and Scheuer staging of fibrosis. T2 signal (N = 40), CE alterations (N = 29), and RLE (N = 29) were assessed by two raters. Mixed-effects regression models were applied to estimate the association between histopathology and MRI parameters. Results No significant association was observed between T2 signal or CE alterations with stages of fibrosis or mHAI grading. Regression models revealed significant positive associations of portal venous phase RLE with mHAI grade ≥ 7 points [β = 25.5; 95% CI (2.53; 48.62); p = 0.04] and delayed phase RLE with stages of fibrosis [stage 2: β = 35.13; 95% CI (11.35; 58.87); p = 0.007; stage 3/4: β = 69.24; 95% CI (45.77; 92.75); p < 0.001]. The optimal cut-off value of 66.6% delayed phase RLE distinguished fibrosis stages 0–2 from 3–4 with a sensitivity of 0.833 and specificity of 0.972. Inter-rater reliability (IRR) for quantification of RLE was ‘excellent’ (r = 0.90–0.98). IRR was ‘substantial’ for detection of T2 signal in the right liver lobe (RL) (Kappa = 0.77) and ‘almost perfect’ for T2 signal of the left liver lobe (LL) and CE of both lobes (Kappa = 0.87–1.0). Conclusion The simple and reproducible method of RLE quantification on standard extracellular GBCA-enhanced MRI may provide a correlate measure of advanced stages of hepatic fibrosis and potentially also inflammation in PSC patients, if validated in larger cohorts.
Collapse
Affiliation(s)
- Sarah Keller
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- * E-mail:
| | - Annette Aigner
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Roman Zenouzi
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anne C. Kim
- Department Stroke and Neurovascular Imaging, The Permanente Medical Group, San Francisco, California, United States of America
| | - Arnoud Meijer
- Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Sören A. Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ansgar W. Lohse
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Gerhard Adam
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jin Yamamura
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
8
|
Rao SX, Zeng MS. Assessment of liver function by Gd-EOB-DTPA enhanced magnetic resonance imaging. Shijie Huaren Xiaohua Zazhi 2016; 24:3940-3945. [DOI: 10.11569/wcjd.v24.i28.3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA), a liver-specific magnetic resonance imaging (MRI) contrast agent, is increasingly used for imaging-based liver function tests. Like indocyanine green and mebrofenin, Gd-EOB-DTPA is taken up by hepatocytes through organic anion-transporting polypeptides 1 (OATP1) B1 and B3 and is then excreted into the bile by multi-drug resistance protein (MRP2). The advantages of Gd-EOB-DTPA-based liver function tests include function measurement integrated in an existing MRI protocol, ability of evaluating segmental liver function, and no ionizing radiation. The approaches based on Gd-EOB-DTPA for function measurement are as follows: measurement of biliary elimination, hepatic parenchymal enhancement, MR relaxometry, and MR perfusion. These approaches have potential value for assessing liver reserve, hepatic fibrosis, non-alcoholic fatty liver disease and so on.
Collapse
|
9
|
Chen BB, Murakami T, Shih TTF, Sakamoto M, Matsui O, Choi BI, Kim MJ, Lee JM, Yang RJ, Zeng MS, Chen RC, Liang JD. Novel Imaging Diagnosis for Hepatocellular Carcinoma: Consensus from the 5th Asia-Pacific Primary Liver Cancer Expert Meeting (APPLE 2014). Liver Cancer 2015; 4:215-27. [PMID: 26734577 PMCID: PMC4698631 DOI: 10.1159/000367742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Current novel imaging techniques in the diagnosis of hepatocellular carcinoma (HCC), with the latest evidence in this field, was discussed at the Asia-Pacific Primary Liver Cancer Expert (APPLE) meeting held in Taipei, Taiwan, in July 2014. Based on their expertise in a specific area of research, the novel imaging group comprised 12 participants from Japan, South Korea, Taiwan, and China and it included 10 abdominal radiologists, one hepatologist, and one pathologist. The expert participants discussed topics related to HCC imaging that were divided into four categories: (i) detection method, (ii) diagnostic method, (iii) evaluation method, and (iv) functional method. Consensus was reached on 10 statements; specific comments on each statement were provided to explain the rationale for the voting results and to suggest future research directions.
Collapse
Affiliation(s)
- Bang-Bin Chen
- Department of Medical Imaging, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (ROC)
| | - Takamichi Murakami
- Department of Radiology, Kinki University, Faculty of Medicine, Osaka, Japan,*Takamichi Murakami, MD, PhD, Department of Radiology, Kinki University, Faculty of Medicine, 377-2, Ohno-Higashi, Osakasayama-City, Osaka 589-8511 (Japan), TEL. +81 72 366 0221, E-Mail
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (ROC)
| | - Michiie Sakamoto
- Department of Pathology, Keio University School of Medicine, Tokyo
| | - Osamu Matsui
- Department of Radiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | | | - Myeong-Jin Kim
- Department of Radiology, Yonsei University College of Medicine
| | - Jeong Min Lee
- Department of Radiology, Seoul National University, Seoul, Republic of Korea
| | - Ren-jie Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Interventional Therapy, Peking University Cancer Hospital & Institute, Beijing, China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ran-Chou Chen
- Department of Biomedical Imaging and Radiological Science, National Yang-Ming Medical University, Heping Fuyou Branch, Taipei City Hospital, Taiwan (ROC)
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan (ROC)
| |
Collapse
|