1
|
Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D, Pani R, De Vincentis G, De Sio L. 18F-fluorodeoxyglucose ( 18F-FDG) Functionalized Gold Nanoparticles (GNPs) for Plasmonic Photothermal Ablation of Cancer: A Review. Pharmaceutics 2023; 15:319. [PMID: 36839641 PMCID: PMC9967497 DOI: 10.3390/pharmaceutics15020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The meeting and merging between innovative nanotechnological systems, such as nanoparticles, and the persistent need to outperform diagnostic-therapeutic approaches to fighting cancer are revolutionizing the medical research scenario, leading us into the world of nanomedicine. Photothermal therapy (PTT) is a non-invasive thermo-ablative treatment in which cellular hyperthermia is generated through the interaction of near-infrared light with light-to-heat converter entities, such as gold nanoparticles (GNPs). GNPs have great potential to improve recovery time, cure complexity, and time spent on the treatment of specific types of cancer. The development of gold nanostructures for photothermal efficacy and target selectivity ensures effective and deep tissue-penetrating PTT with fewer worries about adverse effects from nonspecific distributions. Regardless of the thriving research recorded in the last decade regarding the multiple biomedical applications of nanoparticles and, in particular, their conjugation with drugs, few works have been completed regarding the possibility of combining GNPs with the cancer-targeted pharmaceutical fluorodeoxyglucose (FDG). This review aims to provide an actual scenario on the application of functionalized GNP-mediated PTT for cancer ablation purposes, regarding the opportunity given by the 18F-fluorodeoxyglucose (18F-FDG) functionalization.
Collapse
Affiliation(s)
- Mariano Pontico
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Miriam Conte
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Francesca Petronella
- Institute of Crystallography CNR-IC, National Research Council of Italy, Monterotondo, 00015 Rome, Italy
| | - Viviana Frantellizzi
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Maria Silvia De Feo
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Dario Di Luzio
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Roberto Pani
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| | - Giuseppe De Vincentis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, Sapienza, University of Rome, 00185 Rome, Italy
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Research Center for Biophotonics, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
2
|
Khorshid S, Montanari M, Benedetti S, Moroni S, Aluigi A, Canonico B, Papa S, Tiboni M, Casettari L. A microfluidic approach to fabricate sucrose decorated liposomes with increased uptake in breast cancer cells. Eur J Pharm Biopharm 2022; 178:53-64. [DOI: 10.1016/j.ejpb.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022]
|
3
|
Anik MI, Mahmud N, Al Masud A, Hasan M. Gold nanoparticles (GNPs) in biomedical and clinical applications: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202100255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Muzahidul I. Anik
- Department of Chemical Engineering University of Rhode Island South Kingstown Rhode Island USA
| | - Niaz Mahmud
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering Bangladesh University of Engineering and Technology Dhaka Bangladesh
| | - Maruf Hasan
- Department of Biomedical Engineering Military Institute of Science and Technology Dhaka Bangladesh
| |
Collapse
|
4
|
Electrophysiological effects of polyethylene glycol modified gold nanoparticles on mouse hippocampal neurons. Heliyon 2020; 6:e05824. [PMID: 33426332 PMCID: PMC7779771 DOI: 10.1016/j.heliyon.2020.e05824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Gold nanoparticles (AuNPs) can cross the blood brain barrier, thus can be used as nanocarriers in brain drug delivery. However, the effect of bare and polyethylene glycol-modified (PEGylated) AuNPs on normal neural function has not been extensively investigated. In this study, bioelectrical properties of neuronal functions of male BALB/c mice were explored ex vivo and in vivo by using 5 nm bare AuNPs and PEGylated AuNPs. Electrophysiological properties of neurons from hippocampal CA1 region sections were recorded by patch clamp method. Ex vivo, firing rate of action and membrane potentials in response to negative current stimuli significantly altered only after bare AuNP exposure compared to control (p < 0.05). After in vivo injections, anxiety levels of animals were similar. Amplitude of action potentials reduced only in bare AuNP group (p < 0.05). In conclusion, excitability of hippocampal neurons is increasing with bare AuNP exposure, and PEGylation might be more biocompatible for medical applications.
Collapse
|
5
|
Wang S, An J, Dong W, Wang X, Sheng J, Jia Y, He Y, Ma X, Wang J, Yu D, Jia X, Wang B, Yu W, Liu K, Zhao Y, Wu Y, Zhu W, Pan Y. Glucose-coated Berberine Nanodrug for Glioma Therapy through Mitochondrial Pathway. Int J Nanomedicine 2020; 15:7951-7965. [PMID: 33116511 PMCID: PMC7569050 DOI: 10.2147/ijn.s213079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Introduction Glioma is the primary malignant brain tumor with poor prognosis. Berberine (BBR) was the potential drug for anti-tumor in glioma cells. Based on its limitation of poor aqueous solubility and instability, little information of BBR nanoparticles is reported in glioma. Methods Different solutions including 5% glucose, 1*PBS, ddH2O, 0.9% NaCl, cell culture medium were selected, and only 5% glucose and ddH2O exhibited BBR-related nanoparticles. After heating for a longer time or adding a higher concentration of glucose solution, BBR nanoparticles were detected by TEM analysis. The uptake of BBR-Glu or BBR-Water nanoparticles were detected by immunofluorescence analysis for BBR autofluorescence. Cell viability was measured by MTT assay and Western blotting analysis. Apoptosis was performed with flow cytometric analysis and was detected by cleaved caspase-3 immuno-fluorescent staining. Cell cycle was used by flow cytometric analysis. Cytoskeleton was observed by confocal analysis using the neuron specific Class III ß-tubulin and ß-tubulin antibodies. Mitochondrial-related proteins were detected by Western blotting analyses and mito-tracker staining in live cells. Mitochondrion structures were observed by TEM analysis. ROS generation and ATP production were detected by related commercial kits. The tracking of BBR-Glu or BBR-Water nanoparticles into blood–brain barrier was observed in primary tumor-bearing models. The fluorescence of BBR was detected by confocal analyses in brains and gliomas. Results BBR-Glu nanoparticles became more homogenized and smaller with dose- and time-dependent manners. BBR-Glu nanoparticles were easily absorbed in glioma cells. The IC50 of BBR-Glu in U87 and U251 was far lower than that of BBR-Water. BBR-Glu performed better cytotoxicity, with higher G2/M phase arrest, decreased cell viability by targeting mitochondrion. In primary U87 glioma-bearing mice, BBR-Glu exhibited better imaging in brains and gliomas, indicating that more BBR moved across the blood–brain tumor barrier. Discussion BBR-Glu nanoparticles have better solubility and stability, providing a promising strategy in glioma precision treatment.
Collapse
Affiliation(s)
- Shubin Wang
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Juan An
- Department of Basic Research Medical Sciences, Qinghai University, Xining 810001, People's Republic of China
| | - Weiwei Dong
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing 100085, People's Republic of China
| | - Xin Wang
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Jianqiu Sheng
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Yan Jia
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Yuqi He
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Xianzong Ma
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Jiheng Wang
- Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China
| | - Dedong Yu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Xiuqin Jia
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Bingyu Wang
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Wenbo Yu
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Kejia Liu
- Yidu Cloud (Beijing) Technology Co. Ltd 8F, Health Work, Beijing 100083, People's Republic of China
| | - Yuanyuan Zhao
- National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, People's Republic of China
| | - Yun Wu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Wei Zhu
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China
| | - Yuanming Pan
- Department of Oncology, Baotou City Central Hospital, Baotou 014040, People's Republic of China.,Department of Gastroenterology, The 7th Medical Center of Chinese PLA General Hospital, Beijing 100700, People's Republic of China.,National Center for Nanoscience and Technology, Zhongguancun, Beijing 100190, People's Republic of China
| |
Collapse
|
6
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
7
|
Ge XL, Huang B, Zhang ZL, Liu X, He M, Yu Z, Hu B, Cui R, Liang XJ, Pang DW. Glucose-functionalized near-infrared Ag 2Se quantum dots with renal excretion ability for long-term in vivo tumor imaging. J Mater Chem B 2019; 7:5782-5788. [PMID: 31482937 DOI: 10.1039/c9tb01112a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Non-toxic and long-term fluorescent probes for tumor imaging are in urgent need for non-invasively obtaining information about tumor genesis and metastasis in vivo. Here, we present a biocompatible near-infrared fluorescent probe for in vivo long-term imaging of tumor by modifying glucose (Glc), which experiences high uptake in cancer cells, on the surface of near-infrared Ag2Se quantum dots (NIR Ag2Se QDs). The fluorescence of glucose-functionalized Ag2Se QDs (Glc-Ag2Se QDs) from the targeted tumor can be observed in vivo for at least 7 days. In addition, this probe could be excreted through kidneys and the renal excretion ability is favorable for in vivo imaging applications. Moreover, Glc-Ag2Se QDs could be used for tumor targeted imaging of not only human breast cancer cells (MCF-7), but also SW1990 pancreatic cancer cells since glucose is highly taken up in almost all kinds of tumors. Glc-Ag2Se QDs could be a promising general tool for in vivo long-term observation of tumor evolution.
Collapse
Affiliation(s)
- Xiao-Lei Ge
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Biao Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Zhi-Ling Zhang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xiaolan Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Zili Yu
- Key Laboratory of Oral Biomedicine (Ministry of Education) and Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079, P. R. China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, P. R. China.
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
8
|
A Monte Carlo study on the radio-sensitization effect of gold nanoparticles in brachytherapy of prostate by 103Pd seeds. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2019. [DOI: 10.2478/pjmpe-2019-0012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
103Pd seed is being used for prostate brachytherapy. Additionally, the dose enhancement effect of gold nanoparticles (GNP) has been reported in previous studies. The aim of this study was to characterize the dosimetric effect of gold nanoparticles in brachytherapy with a 103Pd source. Two brachytherapy seeds including 103 Pd source was simulated using MCNPX Monte Carlo code. The seeds’ models were validated by comparing the MC with reported results. Then, GNPs (10 nm in diameter) with a concentration of 7mg Au/g were simulated uniformly inside the prostate of a humanoid computational phantom. Additionally, the dose enhancement factor (DEF) of nanoparticles was calculated for both modeled brachytherapy seeds. A good agreement was found between the MC calculated and the reported dosimetric parameters. For both seeds, an average DEF of 23% was obtained in tumor volume for prostate brachytherapy. The application of GNPs in conjunction with 103Pd seed in brachytherapy can enhance the delivered dose to the tumor and consequently leads to better treatment outcome.
Collapse
|
9
|
Kang YJ, Cutler EG, Cho H. Therapeutic nanoplatforms and delivery strategies for neurological disorders. NANO CONVERGENCE 2018; 5:35. [PMID: 30499047 PMCID: PMC6265354 DOI: 10.1186/s40580-018-0168-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/20/2018] [Indexed: 05/26/2023]
Abstract
The major neurological disorders found in a central nervous system (CNS), such as brain tumors, Alzheimer's diseases, Parkinson's diseases, and Huntington's disease, have led to devastating outcomes on the human public health. Of these disorders, early diagnostics remains poor, and no treatment has been successfully discovered; therefore, they become the most life-threatening medical burdens worldwide compared to other major diseases. The major obstacles for the drug discovery are the presence of a restrictive blood-brain barrier (BBB), limiting drug entry into brains and undesired neuroimmune activities caused by untargeted drugs, leading to irreversible neuronal damages. Recent advances in nanotechnology have contributed to the development of novel nanoplatforms and effective delivering strategies to improve the CNS disorder treatment while less disturbing brain systems. The nanoscale drug carriers, including liposomes, dendrimers, viral capsids, polymeric nanoparticles, silicon nanoparticles, and magnetic/metallic nanoparticles, enable the effective drug delivery penetrating across the BBB, the aforementioned challenges in the CNS. Moreover, drugs encapsulated by the nanocarriers can reach further deeper into targeting regions while preventing the degradation. In this review, we classify novel disease hallmarks incorporated with emerging nanoplatforms, describe promising approaches for improving drug delivery to the disordered CNS, and discuss their implications for clinical practice.
Collapse
Affiliation(s)
- You Jung Kang
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Eric Gerard Cutler
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| | - Hansang Cho
- Department of Mechanical Engineering and Engineering Science, Center for Biomedical Engineering and Science, Department of Biological Sciences, The Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC USA
| |
Collapse
|
10
|
Suvarna S, Das U, KC S, Mishra S, Sudarshan M, Saha KD, Dey S, Chakraborty A, Narayana Y. Synthesis of a novel glucose capped gold nanoparticle as a better theranostic candidate. PLoS One 2017; 12:e0178202. [PMID: 28582426 PMCID: PMC5459428 DOI: 10.1371/journal.pone.0178202] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/09/2017] [Indexed: 01/17/2023] Open
Abstract
Gold nanoparticles are predominantly used in diagnostics, therapeutics and biomedical applications. The present study has been designed to synthesize differently capped gold nanoparticles (AuNps) by a simple, one-step, room temperature procedure and to evaluate the potential of these AuNps for biomedical applications. The AuNps are capped with glucose, 2-deoxy-D-glucose (2DG) and citrate using different reducing agents. This is the first report of synthesis of 2DG-AuNp by the simple room temperature method. The synthesized gold nanoparticles are characterized with UV-Visible Spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and selected area electron diffraction (SAED), Dynamic light scattering (DLS), and Energy-dispersive X-ray spectroscopy (SEM-EDS). Surface-enhanced Raman scattering (SERS) study of the synthesized AuNps shows increase in Raman signals up to 50 times using 2DG. 3-(4, 5-dimethylthiozol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay has been performed using all the three differently capped AuNps in different cell lines to assess cytotoxcity if any, of the nanoparticles. The study shows that 2DG-AuNps is a better candidate for theranostic application.
Collapse
Affiliation(s)
- Saritha Suvarna
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Karnataka, India
| | - Ujjal Das
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, West Bengal, India
| | - Sunil KC
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Karnataka, India
| | - Snehasis Mishra
- Cancer Biology & Inflammatory Disorder Division, IICB, Kolkata, West Bengal, India
| | - Mathummal Sudarshan
- UGC-DAE Consortium for Scientific Research Centre, Kolkata, West Bengal, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, IICB, Kolkata, West Bengal, India
| | - Sanjit Dey
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, West Bengal, India
| | | | - Y. Narayana
- Department of Studies in Physics, Mangalore University, Mangalagangotri, Karnataka, India
- * E-mail:
| |
Collapse
|
11
|
Dosekova E, Filip J, Bertok T, Both P, Kasak P, Tkac J. Nanotechnology in Glycomics: Applications in Diagnostics, Therapy, Imaging, and Separation Processes. Med Res Rev 2017; 37:514-626. [PMID: 27859448 PMCID: PMC5659385 DOI: 10.1002/med.21420] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/08/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
This review comprehensively covers the most recent achievements (from 2013) in the successful integration of nanomaterials in the field of glycomics. The first part of the paper addresses the beneficial properties of nanomaterials for the construction of biosensors, bioanalytical devices, and protocols for the detection of various analytes, including viruses and whole cells, together with their key characteristics. The second part of the review focuses on the application of nanomaterials integrated with glycans for various biomedical applications, that is, vaccines against viral and bacterial infections and cancer cells, as therapeutic agents, for in vivo imaging and nuclear magnetic resonance imaging, and for selective drug delivery. The final part of the review describes various ways in which glycan enrichment can be effectively done using nanomaterials, molecularly imprinted polymers with polymer thickness controlled at the nanoscale, with a subsequent analysis of glycans by mass spectrometry. A short section describing an active glycoprofiling by microengines (microrockets) is covered as well.
Collapse
Affiliation(s)
- Erika Dosekova
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Jaroslav Filip
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Tomas Bertok
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| | - Peter Both
- School of Chemistry, Manchester Institute of BiotechnologyThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Peter Kasak
- Center for Advanced MaterialsQatar UniversityP.O. Box 2713DohaQatar
| | - Jan Tkac
- Department of Glycobiotechnology, Institute of ChemistrySlovak Academy of SciencesDubravska cesta 9845 38BratislavaSlovakia
| |
Collapse
|
12
|
Ashton JR, West JL, Badea CT. In vivo small animal micro-CT using nanoparticle contrast agents. Front Pharmacol 2015; 6:256. [PMID: 26581654 PMCID: PMC4631946 DOI: 10.3389/fphar.2015.00256] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022] Open
Abstract
Computed tomography (CT) is one of the most valuable modalities for in vivo imaging because it is fast, high-resolution, cost-effective, and non-invasive. Moreover, CT is heavily used not only in the clinic (for both diagnostics and treatment planning) but also in preclinical research as micro-CT. Although CT is inherently effective for lung and bone imaging, soft tissue imaging requires the use of contrast agents. For small animal micro-CT, nanoparticle contrast agents are used in order to avoid rapid renal clearance. A variety of nanoparticles have been used for micro-CT imaging, but the majority of research has focused on the use of iodine-containing nanoparticles and gold nanoparticles. Both nanoparticle types can act as highly effective blood pool contrast agents or can be targeted using a wide variety of targeting mechanisms. CT imaging can be further enhanced by adding spectral capabilities to separate multiple co-injected nanoparticles in vivo. Spectral CT, using both energy-integrating and energy-resolving detectors, has been used with multiple contrast agents to enable functional and molecular imaging. This review focuses on new developments for in vivo small animal micro-CT using novel nanoparticle probes applied in preclinical research.
Collapse
Affiliation(s)
- Jeffrey R Ashton
- Department of Biomedical Engineering, Duke University, Durham NC, USA ; Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| | - Jennifer L West
- Department of Biomedical Engineering, Duke University, Durham NC, USA
| | - Cristian T Badea
- Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Durham NC, USA
| |
Collapse
|
13
|
De Souza R, Spence T, Huang H, Allen C. Preclinical imaging and translational animal models of cancer for accelerated clinical implementation of nanotechnologies and macromolecular agents. J Control Release 2015; 219:313-330. [PMID: 26409122 DOI: 10.1016/j.jconrel.2015.09.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
Abstract
The majority of animal models of cancer have performed poorly in terms of predicting clinical performance of new therapeutics, which are most often first evaluated in patients with advanced, metastatic disease. The development and use of metastatic models of cancer may enhance clinical translatability of preclinical studies focused on the development of nanotechnology-based drug delivery systems and macromolecular therapeutics, potentially accelerating their clinical implementation. It is recognized that the development and use of such models are not without challenge. Preclinical imaging tools offer a solution by allowing temporal and spatial characterization of metastatic lesions. This paper provides a review of imaging methods applicable for evaluation of novel therapeutics in clinically relevant models of advanced cancer. An overview of currently utilized models of oncology in small animals is followed by image-based development and characterization of visceral metastatic cancer models. Examples of imaging tools employed for metastatic lesion detection, evaluation of anti-tumor and anti-metastatic potential and biodistribution of novel therapies, as well as the co-development and/or use of imageable surrogates of response, are also discussed. While the focus is on development of macromolecular and nanotechnology-based therapeutics, examples with small molecules are included in some cases to illustrate concepts and approaches that can be applied in the assessment of nanotechnologies or macromolecules.
Collapse
Affiliation(s)
- Raquel De Souza
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Tara Spence
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Huang Huang
- DLVR Therapeutics, 661 University Avenue, Toronto, Ontario M5G 0A3, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| |
Collapse
|
14
|
Fahrenholtz CD, Hadimani M, King SB, Torti SV, Singh R. Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine (Lond) 2015; 10:2481-97. [PMID: 26296098 PMCID: PMC4610120 DOI: 10.2217/nnm.15.90] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIMS To evaluate the use of glucosamine functionalized multiwalled carbon nanotubes (glyco-MWCNTs) for breast cancer targeting. MATERIALS & METHODS Two types of glucosamine functionalized MWCNTs were developed (covalently linked glucosamine and non-covalently phospholipid-glucosamine coated) and evaluated for their potential to bind and target breast cancer cells in vitro and in vivo. RESULTS & CONCLUSION Binding of glyco-MWCNTs in breast cancer cells is mediated by specific interaction with glucose transporters. Glyco-MWCNTs prepared by non-covalent coating with phospholipid-glucosamine displayed an extended blood circulation time, delayed urinary clearance, low tissue retention and increased breast cancer tumor accumulation in vivo. These studies lay the foundation for development of a cancer diagnostic agent based upon glyco-MWCNTs with the potential for superior accuracy over current radiopharmaceuticals.
Collapse
Affiliation(s)
- Cale D Fahrenholtz
- Department of Cancer Biology, Wake Forest University Health Sciences, Hanes Bldg, Rm 4045, Medical Center Blvd, Winston Salem, NC 27157, USA
| | - Mallinath Hadimani
- Department of Chemistry, Wake Forest University, Winston Salem, NC 27109, USA
| | - S Bruce King
- Department of Chemistry, Wake Forest University, Winston Salem, NC 27109, USA
| | - Suzy V Torti
- Department of Molecular Biology & Biophysics, University of Connecticut Health Center, CT 06030, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University Health Sciences, Hanes Bldg, Rm 4045, Medical Center Blvd, Winston Salem, NC 27157, USA
- Comprehensive Cancer Center of Wake Forest School of Medicine, Winston Salem, NC 27157, USA
| |
Collapse
|
15
|
Hu C, Niestroj M, Yuan D, Chang S, Chen J. Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles. Int J Nanomedicine 2015; 10:2065-77. [PMID: 25844037 PMCID: PMC4368028 DOI: 10.2147/ijn.s72144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer ranks among the leading causes of human mortality. Cancer becomes intractable when it spreads from the primary tumor site to various organs (such as bone, lung, liver, and then brain). Unlike solid tumor cells, cancer stem cells and metastatic cancer cells grow in a non-attached (suspension) form when moving from their source to other locations in the body. Due to the non-attached growth nature, metastasis is often first detected in the circulatory systems, for instance in a lymph node near the primary tumor. Cancer research over the past several decades has primarily focused on treating solid tumors, but targeted therapy to treat cancer stem cells and cancer metastasis has yet to be developed. Because cancers undergo faster metabolism and consume more glucose than normal cells, glucose was chosen in this study as a reagent to target cancer cells. In particular, by covalently binding gold nanoparticles (GNPs) with thio-PEG (polyethylene glycol) and thio-glucose, the resulting functionalized GNPs (Glu-GNPs) were created for targeted treatment of cancer metastasis and cancer stem cells. Suspension cancer cell THP-1 (human monocytic cell line derived from acute monocytic leukemia patients) was selected because it has properties similar to cancer stem cells and has been used as a metastatic cancer cell model for in vitro studies. To take advantage of cancer cells' elevated glucose consumption over normal cells, different starvation periods were screened in order to achieve optimal treatment effects. Cancer cells were then fed using Glu-GNPs followed by X-ray irradiation treatment. For comparison, solid tumor MCF-7 cells (breast cancer cell line) were studied as well. Our irradiation experimental results show that Glu-GNPs are better irradiation sensitizers to treat THP-1 cells than MCF-7 cells, or Glu-GNPs enhance the cancer killing of THP-1 cells 20% more than X-ray irradiation alone and GNP treatment alone. This finding can help oncologists to design therapeutic strategies to target cancer stem cells and cancer metastasis.
Collapse
Affiliation(s)
- Chenxia Hu
- Faculty of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Martin Niestroj
- Canadian Light Source, Saskatoon, SK, Canada ; Physics Department, Bonn University, Bonn, Germany
| | - Daniel Yuan
- Biomedical Engineering Department, Johns Hopkins University, Baltimore, MD, USA
| | - Steven Chang
- Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
| | - Jie Chen
- Faculty of Engineering, University of Alberta, Edmonton, AB, Canada ; Canadian National Research Council/National Institute for Nanotechnology, Edmonton, AB, Canada
| |
Collapse
|