4
|
Schmitz-Hübsch T, Lux S, Bauer P, Brandt AU, Schlapakow E, Greschus S, Scheel M, Gärtner H, Kirlangic ME, Gras V, Timmann D, Synofzik M, Giorgetti A, Carloni P, Shah JN, Schöls L, Kopp U, Bußenius L, Oberwahrenbrock T, Zimmermann H, Pfueller C, Kadas EM, Rönnefarth M, Grosch AS, Endres M, Amunts K, Paul F, Doss S, Minnerop M. Spinocerebellar ataxia type 14: refining clinicogenetic diagnosis in a rare adult-onset disorder. Ann Clin Transl Neurol 2021; 8:774-789. [PMID: 33739604 PMCID: PMC8045942 DOI: 10.1002/acn3.51315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/29/2022] Open
Abstract
Objectives Genetic variant classification is a challenge in rare adult‐onset disorders as in SCA‐PRKCG (prior spinocerebellar ataxia type 14) with mostly private conventional mutations and nonspecific phenotype. We here propose a refined approach for clinicogenetic diagnosis by including protein modeling and provide for confirmed SCA‐PRKCG a comprehensive phenotype description from a German multi‐center cohort, including standardized 3D MR imaging. Methods This cross‐sectional study prospectively obtained neurological, neuropsychological, and brain imaging data in 33 PRKCG variant carriers. Protein modeling was added as a classification criterion in variants of uncertain significance (VUS). Results Our sample included 25 cases confirmed as SCA‐PRKCG (14 variants, thereof seven novel variants) and eight carriers of variants assigned as VUS (four variants) or benign/likely benign (two variants). Phenotype in SCA‐PRKCG included slowly progressive ataxia (onset at 4–50 years), preceded in some by early‐onset nonprogressive symptoms. Ataxia was often combined with action myoclonus, dystonia, or mild cognitive‐affective disturbance. Inspection of brain MRI revealed nonprogressive cerebellar atrophy. As a novel finding, a previously not described T2 hyperintense dentate nucleus was seen in all SCA‐PRKCG cases but in none of the controls. Interpretation In this largest cohort to date, SCA‐PRKCG was characterized as a slowly progressive cerebellar syndrome with some clinical and imaging features suggestive of a developmental disorder. The observed non‐ataxia movement disorders and cognitive‐affective disturbance may well be attributed to cerebellar pathology. Protein modeling emerged as a valuable diagnostic tool for variant classification and the newly described T2 hyperintense dentate sign could serve as a supportive diagnostic marker of SCA‐PRKCG.
Collapse
Affiliation(s)
- Tanja Schmitz-Hübsch
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Peter Bauer
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,CENTOGENE AG, Rostock, Germany
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neurology, University of California, Irvine, CA, USA
| | - Elena Schlapakow
- Department of Neurology, University Hospital Bonn, Bonn, Germany.,Center for Rare Diseases, University of Bonn, Bonn, Germany
| | - Susanne Greschus
- Department of Radiology, University Hospital Bonn, Bonn, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Department of Neuroradiology, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Hanna Gärtner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
| | - Mehmet E Kirlangic
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Biomedical Engineering and Computer Science, Technische Universität Ilmenau, Ilmenau, Germany
| | - Vincent Gras
- Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alejandro Giorgetti
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, Juelich, Germany.,Department of Biotechnology, University of Verona, Verona, 37134, Italy
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation (IAS-5) and Institute of Neuroscience and Medicine (INM-9), Research Centre Juelich, Juelich, Germany
| | - Jon N Shah
- Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Center for Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ute Kopp
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lisa Bußenius
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Institute for Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Clinic Hamburg Eppendorf, Hamburg, Germany
| | - Timm Oberwahrenbrock
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Caspar Pfueller
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Ella-Maria Kadas
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany
| | - Maria Rönnefarth
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Anne-Sophie Grosch
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,C. and O. Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Sarah Doss
- Klinik und Hochschulambulanz für Neurologie, Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Movement Disorders Section, Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany.,Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Cocozza S, Pontillo G, De Michele G, Perillo T, Guerriero E, Ugga L, Salvatore E, Galatolo D, Riso V, Saccà F, Quarantelli M, Brunetti A. The "crab sign": an imaging feature of spinocerebellar ataxia type 48. Neuroradiology 2020; 62:1095-1103. [PMID: 32285148 DOI: 10.1007/s00234-020-02427-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE A new form of autosomal dominant hereditary spinocerebellar ataxia (SCA) has been recently described (SCA48), and here we investigate its conventional MRI findings to identify the presence of a possible imaging feature of this condition. METHODS In this retrospective observational study, we evaluated conventional MRI scans from 10 SCA48 patients (M/F = 5/5; 44.7 ± 7.8 years). For all subjects, atrophy of both supratentorial and infratentorial compartments were recorded, as well as the presence of possible T2-weighted imaging (T2WI) signal alterations. RESULTS In SCA48 patients, no meaningful supratentorial changes were found, both in terms of volume loss or MRI signal changes. Atrophy of the cerebellum was present in all cases, involving both the vermis and the hemispheres, but particularly affecting the postero-lateral portions of the cerebellar hemispheres. In all patients, with the exception of only one subject (90.0% of the cases), a T2WI hyperintensity of both dentate nuclei was found. The association of such signal alteration with the pattern of cerebellar atrophy resembled the appearance of a crab ("crab sign"). CONCLUSION Our findings suggest that SCA48 patients are characterized by cerebellar atrophy, mainly involving the postero-lateral hemisphere areas, along with a T2WI hyperintensity of dentate nuclei. We propose that the association of such signal change, along with the atrophy of the lateral portion of the cerebellar hemispheres, resembled the appearance of a crab, and therefore, we propose the "crab sign" as a neuroradiological sign present in SCA48 patients.
Collapse
Affiliation(s)
- Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy.
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Teresa Perillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Elvira Guerriero
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Elena Salvatore
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Daniele Galatolo
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Vittorio Riso
- Area of Neuroscience, Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Mario Quarantelli
- Institute of Biostructure and Bioimaging, National Research Council, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| |
Collapse
|