1
|
Sipos TC, Attila K, Kocsis L, Bălașa A, Chinezu R, Baróti BÁ, Pap Z. Clinicopathological Parameters and Immunohistochemical Profiles in Correlation with MRI Characteristics in Glioblastomas. Int J Mol Sci 2024; 25:13043. [PMID: 39684754 DOI: 10.3390/ijms252313043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma is considered the most aggressive tumor of the central nervous system. The tumor microenvironment includes several components, such as endothelial cells, immune cells, and extracellular matrix components like matrix metalloproteinase-9 (MMP-9), which facilitates the proliferation of endothelial cells with pro-angiogenic roles. The MRI characteristics of glioblastomas can contribute to determining the prognosis. The aim of this study was to analyze the relationship between tumor angiogenesis in glioblastomas in association with MMP-9 immunoexpression. The results were correlated with the Ki-67 proliferation index, p53 immunoexpression, and the mutational status of IDH1 and ATRX, as well as MRI imaging data. This retrospective study included forty-four patients diagnosed with glioblastoma at the Department of Pathology, Târgu Mureș County Emergency Clinical Hospital. MMP-9 immunoexpression was observed in approximately half of the cases, more frequently in patients over 65 years old. Comparing the imaging data with the immunohistochemical results, we observed that the median tumor volume was higher in glioblastomas with IDH1 and p53 mutations, ATRX wild-type status, negative MMP-9 expression, and high Ki-67 proliferation indexes. The median values of MVD-CD34 and MVD-CD105 were higher in cases with extensive peritumoral edema in the contralateral hemisphere. Additionally, ATRX mutations were frequently associated with a more pronounced deviation of the median structures. To statistically validate the associations between MRI and the histopathological features of glioblastomas, further studies with larger cohorts are required.
Collapse
Affiliation(s)
- Tamás-Csaba Sipos
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
| | - Kövecsi Attila
- Pathology Department, County Emergency Clinical Hospital of Târgu Mureș, 540136 Târgu Mures, Romania
- Pathology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Lóránd Kocsis
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 540142 Târgu Mures, Romania
| | - Adrian Bălașa
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Rareș Chinezu
- Neurosurgery Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Neurosurgery Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Beáta Ágota Baróti
- Radiology Department, Emergency Clinical County Hospital, 540136 Târgu Mures, Romania
- Radiology Department, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| | - Zsuzsánna Pap
- Department of Anatomy and Embryology, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, 38 Gheorghe Marinescu Str., 540142 Târgu Mures, Romania
| |
Collapse
|
2
|
Valenzuela-Fuenzalida JJ, Moyano-Valarezo L, Silva-Bravo V, Milos-Brandenberg D, Orellana-Donoso M, Nova-Baeza P, Suazo-Santibáñez A, Rodríguez-Luengo M, Oyanedel-Amaro G, Sanchis-Gimeno J, Gutiérrez Espinoza H. Association between the Anatomical Location of Glioblastoma and Its Evaluation with Clinical Considerations: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:3460. [PMID: 38929990 PMCID: PMC11204640 DOI: 10.3390/jcm13123460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Glioblastoma is a primary malignant brain tumor; it is aggressive with a high degree of malignancy and unfavorable prognosis and is the most common type of malignant brain tumor. Glioblastomas can be located in the brain, cerebellum, brainstem, and spinal cord, originating from glial cells, particularly astrocytes. Methods: The databases MEDLINE, Scopus, Web of Science, Google Scholar, and CINAHL were researched up to January 2024. Two authors independently performed the search, study selection, and data extraction. Methodological quality was evaluated with an assurance tool for anatomical studies (AQUA). The statistical mean, standard deviation, and difference of means calculated with the Student's t-test for presence between hemispheres and presence in the frontal and temporal lobes were analyzed. Results: A total of 123 studies met the established selection criteria, with a total of 6224 patients. In relation to the mean, GBM between hemispheres had a mean of 33.36 (SD 58.00) in the right hemisphere and a mean of 34.70 (SD 65.07) in the left hemisphere, due to the difference in averages between hemispheres. There were no statistically significant differences, p = 0.35. For the comparison between the presence of GBM in the frontal lobe and the temporal lobe, there was a mean in the frontal lobe of 23.23 (SD 40.03), while in the temporal lobe, the mean was 22.05 (SD 43.50), and for the difference in means between the frontal lobe and the temporal lobe, there was no statistically significant difference for the presence of GBM, p = 0.178. Conclusions: We believe that before a treatment, it will always be correct to know where the GBM is located and how it behaves clinically, in order to generate correct conservative or surgical treatment guidelines for each patient. We believe that more detailed studies are also needed to show why GBM is associated more with some regions than others, despite the brain structure being homologous to other regions in which GMB occurs less frequently, which is why knowing its predominant presence in brain regions is very important.
Collapse
Affiliation(s)
- Juan Jose Valenzuela-Fuenzalida
- Departamento de Ciencias Química y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O’Higgins, Santiago 8320000, Chile;
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Laura Moyano-Valarezo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Vicente Silva-Bravo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Daniel Milos-Brandenberg
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
- Escuela de Medicina, Facultad Ciencias de la Salud, Universidad del Alba, Santiago 8320000, Chile
| | - Mathias Orellana-Donoso
- Escuela de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile;
- Department of Morphological Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago 8420524, Chile
| | - Pablo Nova-Baeza
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | | | - Macarena Rodríguez-Luengo
- Departament de Morfología, Facultad de Medicina, Universidad Andrés Bello, Santiago 8370146, Chile; (L.M.-V.); (V.S.-B.); (D.M.-B.); (P.N.-B.); (M.R.-L.)
| | - Gustavo Oyanedel-Amaro
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Juan Sanchis-Gimeno
- GIAVAL Research Group, Department of Anatomy and Human Embryology, Faculty of Medicine, University of Valencia, 46001 Valencia, Spain;
| | | |
Collapse
|