1
|
Guo R, Yu Y, Huang Y, Lin M, Liao Y, Hu Y, Li Q, Peng C, Zhou J. A nomogram model combining ultrasound-based radiomics features and clinicopathological factors to identify germline BRCA1/2 mutation in invasive breast cancer patients. Heliyon 2024; 10:e23383. [PMID: 38169922 PMCID: PMC10758804 DOI: 10.1016/j.heliyon.2023.e23383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Objective BRCA1/2 status is a key to personalized therapy for invasive breast cancer patients. This study aimed to explore the association between ultrasound radiomics features and germline BRCA1/2 mutation in patients with invasive breast cancer. Materials and methods In this retrospective study, 100 lesions in 92 BRCA1/2-mutated patients and 390 lesions in 357 non-BRCA1/2-mutated patients were included and randomly assigned as training and validation datasets in a ratio of 7:3. Gray-scale ultrasound images of the largest plane of the lesions were used for feature extraction. Maximum relevance minimum redundancy (mRMR) algorithm and multivariate logistic least absolute shrinkage and selection operator (LASSO) regression were used to select features. The multivariate logistic regression method was used to construct predictive models based on clinicopathological factors, radiomics features, or a combination of them. Results In the clinical model, age at first diagnosis, family history of BRCA1/2-related malignancies, HER2 status, and Ki-67 level were found to be independent predictors for BRCA1/2 mutation. In the radiomics model, 10 significant features were selected from the 1032 radiomics features extracted from US images. The AUCs of the radiomics model were not inferior to those of the clinical model in both training dataset [0.712 (95% CI, 0.647-0.776) vs 0.768 (95% CI, 0.704-0.835); p = 0.429] and validation dataset [0.705 (95% CI, 0.597-0.808) vs 0.723 (95% CI, 0.625-0.828); p = 0.820]. The AUCs of the nomogram model combining clinical and radiomics features were 0.804 (95% CI, 0.748-0.861) in the training dataset and 0.811 (95% CI, 0.724-0.894) in the validation dataset, which were proved significantly higher than those of the clinical model alone by DeLong's test (p = 0.041; p = 0.007). To be noted, the negative predictive values (NPVs) of the nomogram model reached a favorable 0.93 in both datasets. Conclusion This machine nomogram model combining ultrasound-based radiomics and clinical features exhibited a promising performance in identifying germline BRCA1/2 mutation in patients with invasive breast cancer and may help avoid unnecessary gene tests in clinical practice.
Collapse
Affiliation(s)
| | | | - Yini Huang
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Min Lin
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Ying Liao
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Yixin Hu
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Qing Li
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Chuan Peng
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| | - Jianhua Zhou
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, No. 651 Dongfeng Road East, Guangzhou, 510060, PR China
| |
Collapse
|
2
|
Zhong X, Peng J, Shu Z, Song Q, Li D. Prediction of p53 mutation status in rectal cancer patients based on magnetic resonance imaging-based nomogram: a study of machine learning. Cancer Imaging 2023; 23:88. [PMID: 37723592 PMCID: PMC10507842 DOI: 10.1186/s40644-023-00607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/05/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND The current study aimed to construct and validate a magnetic resonance imaging (MRI)-based radiomics nomogram to predict tumor protein p53 gene status in rectal cancer patients using machine learning. METHODS Clinical and imaging data from 300 rectal cancer patients who underwent radical resections were included in this study, and a total of 166 patients with p53 mutations according to pathology reports were included in these patients. These patients were allocated to the training (n = 210) or validation (n = 90) cohorts (7:3 ratio) according to the examination time. Using the training data set, the radiomic features of primary tumor lesions from T2-weighted images (T2WI) of each patient were analyzed by dimensionality reduction. Multivariate logistic regression was used to screen predictive features, which were combined with a radiomics model to construct a nomogram to predict p53 gene status. The accuracy and reliability of the nomograms were assessed in both training and validation data sets using receiver operating characteristic (ROC) curves. RESULTS Using the radiomics model with the training and validation cohorts, the diagnostic efficacies were 0.828 and 0.795, the sensitivities were 0.825 and 0.891, and the specificities were 0.722 and 0.659, respectively. Using the nomogram with the training and validation data sets, the diagnostic efficacies were 0.86 and 0.847, the sensitivities were 0.758 and 0.869, and the specificities were 0.833 and 0.75, respectively. CONCLUSIONS The radiomics nomogram based on machine learning was able to predict p53 gene status and facilitate preoperative molecular-based pathological diagnoses.
Collapse
Affiliation(s)
- Xia Zhong
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiaxuan Peng
- Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhenyu Shu
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiaowei Song
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Dongxue Li
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Siviengphanom S, Gandomkar Z, Lewis SJ, Brennan PC. Mammography-based Radiomics in Breast Cancer: A Scoping Review of Current Knowledge and Future Needs. Acad Radiol 2022; 29:1228-1247. [PMID: 34799256 DOI: 10.1016/j.acra.2021.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE AND OBJECTIVES Breast cancer is a highly complex heterogeneous disease. Current validated prognostic factors (e.g., histological grade, lymph node involvement, receptor status, and proliferation index), as well as multigene tests (e.g., Oncotype DX and PAM50) are helpful to describe breast cancer characteristics and predict the chance of recurrence risk and survival. Nevertheless, they are invasive and cannot capture a complete heterogeneity of the entire breast tumor resulting in up to 30% of patients being either over- or under-treated for breast cancer. Furthermore, multigene testings are time consuming and expensive. Radiomics is emerging as a reliable, accurate, non-invasive, and cost-effective approach of using quantitative image features to classify breast cancer characteristics and predict patient outcomes. Several recent radiomics reviews have been conducted in breast cancer, however, specific mammography-based radiomics studies have not been well discussed. This scoping review aims to assess and summarize the current evidence on the potential usefulness of mammography-based (i.e., digital mammography, digital breast tomosynthesis, and contrast-enhanced mammography) radiomics in predicting factors that describe breast cancer characteristics, recurrence, and survival. MATERIALS AND METHODS PubMed database and eligible text reference were searched using relevant keywords to identify studies published between 2015 and December 19, 2020. Studies collected were screened and assessed based on the inclusion and exclusion criteria. RESULTS Eighteen eligible studies were included and organized into three main sections: radiomics predicting breast cancer characteristics, radiomics predicting breast cancer recurrence and survival, and radiomics integrating with clinical data. Majority of publications reported retrospective studies while three studies examined prospective cohorts. Encouraging results were reported, suggesting the potential clinical value of mammography-based radiomics. Further efforts are required to standardize radiomics approaches and catalogue reproducible and relevant mammographic radiomic features. The role of integrating radiomics with other information is discussed. CONCLUSION The potential role of mammography-based radiomics appears promising but more efforts are required to further evaluate its reliability as a routine clinical tool.
Collapse
Affiliation(s)
- Somphone Siviengphanom
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia..
| | - Ziba Gandomkar
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Sarah J Lewis
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| | - Patrick C Brennan
- Discipline of Medical Imaging Sciences, Sydney School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Level 7, Susan Wakil Health Building D18, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Ming W, Zhu Y, Bai Y, Gu W, Li F, Hu Z, Xia T, Dai Z, Yu X, Li H, Gu Y, Yuan S, Zhang R, Li H, Zhu W, Ding J, Sun X, Liu Y, Liu H, Liu X. Radiogenomics analysis reveals the associations of dynamic contrast-enhanced–MRI features with gene expression characteristics, PAM50 subtypes, and prognosis of breast cancer. Front Oncol 2022; 12:943326. [PMID: 35965527 PMCID: PMC9366134 DOI: 10.3389/fonc.2022.943326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Background To investigate reliable associations between dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) features and gene expression characteristics in breast cancer (BC) and to develop and validate classifiers for predicting PAM50 subtypes and prognosis from DCE-MRI non-invasively. Methods Two radiogenomics cohorts with paired DCE-MRI and RNA-sequencing (RNA-seq) data were collected from local and public databases and divided into discovery (n = 174) and validation cohorts (n = 72). Six external datasets (n = 1,443) were used for prognostic validation. Spatial–temporal features of DCE-MRI were extracted, normalized properly, and associated with gene expression to identify the imaging features that can indicate subtypes and prognosis. Results Expression of genes including RBP4, MYBL2, and LINC00993 correlated significantly with DCE-MRI features (q-value < 0.05). Importantly, genes in the cell cycle pathway exhibited a significant association with imaging features (p-value < 0.001). With eight imaging-associated genes (CHEK1, TTK, CDC45, BUB1B, PLK1, E2F1, CDC20, and CDC25A), we developed a radiogenomics prognostic signature that can distinguish BC outcomes in multiple datasets well. High expression of the signature indicated a poor prognosis (p-values < 0.01). Based on DCE-MRI features, we established classifiers to predict BC clinical receptors, PAM50 subtypes, and prognostic gene sets. The imaging-based machine learning classifiers performed well in the independent dataset (areas under the receiver operating characteristic curve (AUCs) of 0.8361, 0.809, 0.7742, and 0.7277 for estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2)-enriched, basal-like, and obtained radiogenomics signature). Furthermore, we developed a prognostic model directly using DCE-MRI features (p-value < 0.0001). Conclusions Our results identified the DCE-MRI features that are robust and associated with the gene expression in BC and displayed the possibility of using the features to predict clinical receptors and PAM50 subtypes and to indicate BC prognosis.
Collapse
Affiliation(s)
- Wenlong Ming
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yanhui Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wanjun Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- Collaborative Innovation Center of Jiangsu Province of Cancer Prevention and Treatment of Chinese Medicine, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fuyu Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zixi Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuolei Dai
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiafei Yu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huamei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yu Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Shaoxun Yuan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Haitao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenyong Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jianing Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yun Liu
- Department of Information, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yun Liu, ; Hongde Liu, ; Xiaoan Liu,
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
- *Correspondence: Yun Liu, ; Hongde Liu, ; Xiaoan Liu,
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Yun Liu, ; Hongde Liu, ; Xiaoan Liu,
| |
Collapse
|
5
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
6
|
Darvish L, Bahreyni-Toossi MT, Roozbeh N, Azimian H. The role of radiogenomics in the diagnosis of breast cancer: a systematic review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
One of the most common cancers diagnosed worldwide is breast cancer (BC), which is the leading cause of cancer death among women. The radiogenomics method is more accurate for managing and inhibiting this disease, which takes individual diagnosis on genes, environments, and lifestyles of each person. The present study aims to highlight the current state-of-the-art, the current role and limitations, and future directions of radiogenomics in breast cancer.
Method
This systematic review article was searched from databases such as Embase, PubMed, Web of Science, Google Scholar, Scopus, and Cochrane Library without any date or language limitations of databases. Searches were performed using Boolean OR and AND operators between the main terms and keywords of particular topic of the subject under investigation. All retrospective, prospective, cohort, and pilot studies were included, which were provided with more details about the topic. Articles such as letter to the editor, review, and short communications were excluded because of lack of information, discussions, or use of radiogenomics method on other cancers. For quality assessment of articles, STROBE checklist was used.
Result
For the systematic review, 18 articles were approved after assessing the full text of selected articles. In this review, 3614 patients with BC of selected articles were evaluated, and all radiogenomics were associated with more power in classification, differential diagnosis, and prognosis of BC. Among the various modalities to predict genomic indicators and molecular subtypes, DCE-MRI has the higher performance and finally the highest amount of AUC value (0.956) belonged to PI3K gene.
Conclusion
This review shows that radiogenomics can help with the diagnosis and treatment of breast cancer in patients. It has shown that recognizing and specifying radiogenomic phenotypes in the genomic signatures can be helpful in treatment and diagnosis of disease. The molecular methods used in these articles are limited to miRNAs expression, gene expression, Ki67 proliferation index, next-generation RNA sequencing, whole RNA sequencing, and molecular histopathology that can be completed in future studies by other methods such as exosomal miRNAs, specific proteins expression, DNA repair capacity, and other biomarkers that have prognostic and predictive value for cancer treatment response. Studies with control group and large sample size for evaluation of radiogenomics in diagnosis and treatment recommended.
Collapse
|
7
|
Gao RZ, Wen R, Wen DY, Huang J, Qin H, Li X, Wang XR, He Y, Yang H. Radiomics Analysis Based on Ultrasound Images to Distinguish the Tumor Stage and Pathological Grade of Bladder Cancer. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2685-2697. [PMID: 33615528 DOI: 10.1002/jum.15659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/21/2021] [Accepted: 01/31/2021] [Indexed: 05/28/2023]
Abstract
OBJECTIVES To identify the clinical value of ultrasound radiomic features in the preoperative prediction of tumor stage and pathological grade of bladder cancer (BLCA) patients. METHODS We retrospectively collected patients who had been diagnosed with BLCA by pathology. Ultrasound-based radiomic features were extracted from manually segmented regions of interest. Participants were randomly assigned to a training cohort and a validation cohort at a ratio of 7:3. Radiomic features were Z-score normalized and submitted to dimensional reduction analysis (including Spearman's correlation coefficient analysis, the random forest algorithm, and statistical testing) for core feature selection. Classifiers for tumor stage and pathological grade prediction were then constructed. Prediction performance was estimated by the area under the curve (AUC) of the receiver operating characteristic curve and was verified by the validation cohort. RESULTS A total of 5936 radiomic features were extracted from each of the ultrasound images obtained from 157 patients. The BLCA tumor stage and pathological grade prediction models were developed based on 30 and 35 features, respectively. Both models showed good predictive ability. For the tumor stage prediction model, the AUC was 0.94 in the training cohort and 0.84 in the validation cohort. For the pathological grade model, the AUCs obtained were 0.84 in the training cohort and 0.75 in the validation cohort. CONCLUSIONS The ultrasound-based radiomics models performed well in the preoperative tumor staging and pathological grading of BLCA. These findings should be applied clinically to optimize treatment and to assess prognoses for BLCA.
Collapse
Affiliation(s)
- Rui-Zhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dong-Yue Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Huang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Qin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xin Li
- GE Healthcare, Shanghai, China
| | | | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
8
|
Wu L, Lin P, Zhao Y, Li X, Yang H, He Y. Prediction of Genetic Alterations in Oncogenic Signaling Pathways in Squamous Cell Carcinoma of the Head and Neck: Radiogenomic Analysis Based on Computed Tomography Images. J Comput Assist Tomogr 2021; 45:932-940. [PMID: 34469904 PMCID: PMC8608003 DOI: 10.1097/rct.0000000000001213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study investigated the role of radiomics in evaluating the alterations of oncogenic signaling pathways in head and neck cancer. METHODS Radiomics features were extracted from 106 enhanced computed tomography images with head and neck squamous cell carcinoma. Support vector machine-recursive feature elimination was used for feature selection. Support vector machine algorithm was used to develop radiomics scores to predict genetic alterations in oncogenic signaling pathways. The performance was evaluated by the area under the curve (AUC) of the receiver operating characteristic curve. RESULTS The alterations of the Cell Cycle, HIPPO, NOTCH, PI3K, RTK RAS, and TP53 signaling pathways were predicted by radiomics scores. The AUC values of the training cohort were 0.94, 0.91, 0.94, 0.93, 0.87, and 0.93, respectively. The AUC values of the validation cohort were all greater than 0.7. CONCLUSIONS Radiogenomics is a new method for noninvasive acquisition of tumor molecular information at the genetic level.
Collapse
Affiliation(s)
- Linyong Wu
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Peng Lin
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yujia Zhao
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Xin Li
- GE Healthcare, Shanghai, China
| | - Hong Yang
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| | - Yun He
- From the Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning
| |
Collapse
|
9
|
CT Radiomics for the Prediction of Synchronous Distant Metastasis in Clear Cell Renal Cell Carcinoma. J Comput Assist Tomogr 2021; 45:696-703. [PMID: 34347707 DOI: 10.1097/rct.0000000000001211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The aim of this study was to construct and verify a computed tomography (CT) radiomics model for preoperative prediction of synchronous distant metastasis (SDM) in clear cell renal cell carcinoma (ccRCC) patients. METHODS Overall, 172 patients with ccRCC were enrolled in the present research. Contrast-enhanced CT images were manually sketched, and 2994 quantitative radiomic features were extracted. The radiomic features were then normalized and subjected to hypothesis testing. Least absolute shrinkage and selection operator (LASSO) was applied to dimension reduction, feature selection, and model construction. The performance of the predictive model was validated through analysis of the receiver operating characteristic curve. Multivariate and subgroup analyses were performed to verify the radiomic score as an independent predictor of SDM. RESULTS The patients randomized into a training (n = 104) and a validation (n = 68) cohort in a 6:4 ratio. Through dimension reduction using LASSO regression, 9 radiomic features were used for the construction of the SDM prediction model. The model yielded moderate performance in both the training (area under the curve, 0.89; 95% confidence interval, 0.81-0.97) and the validation cohort (area under the curve, 0.83; 95% confidence interval, 0.69-0.95). Multivariate analysis showed that the CT radiomic signature was an independent risk factor for clinical parameters of ccRCC. Subgroup analysis revealed a significant connection between the SDM and radiomic signature, except for the lower pole of the kidney subgroup. CONCLUSIONS The CT-based radiomics model could be used as a noninvasive, personalized approach for SDM prediction in patients with ccRCC.
Collapse
|
10
|
La Greca Saint-Esteven A, Vuong D, Tschanz F, van Timmeren JE, Dal Bello R, Waller V, Pruschy M, Guckenberger M, Tanadini-Lang S. Systematic Review on the Association of Radiomics with Tumor Biological Endpoints. Cancers (Basel) 2021; 13:cancers13123015. [PMID: 34208595 PMCID: PMC8234501 DOI: 10.3390/cancers13123015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Radiomics supposes an alternative non-invasive tumor characterization tool, which has experienced increased interest with the advent of more powerful computers and more sophisticated machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein, we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method for tumor molecular profile characterization. An extensive literature review was conducted in PubMed, including papers on radiomics and a selected set of clinically relevant and commonly used tumor molecular markers. We summarized our findings based on different cancer entities, additionally evaluating the effect of different modalities for the prediction of biomarkers at each tumor site. Results suggest the existence of an association between the studied biomarkers and radiomics from different modalities and different tumor sites, even though a larger number of multi-center studies are required to further validate the reported outcomes.
Collapse
Affiliation(s)
- Agustina La Greca Saint-Esteven
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
- Correspondence:
| | - Diem Vuong
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Fabienne Tschanz
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Verena Waller
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Martin Pruschy
- Laboratory of Applied Radiobiology, Department of Radiation Oncology, University of Zurich, 8091 Zurich, Switzerland; (F.T.); (V.W.); (M.P.)
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland; (D.V.); (J.E.v.T.); (R.D.B.); (M.G.); (S.T.-L.)
| |
Collapse
|
11
|
Virtual special issue on breast MRI. Clin Radiol 2021; 76:239-240. [PMID: 33500145 DOI: 10.1016/j.crad.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 11/20/2022]
|